首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=,α2+α3=,求方程组AX=b的通解.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=,α2+α3=,求方程组AX=b的通解.
admin
2019-08-23
96
问题
四元非齐次线性方程组AX=b有三个解向量α
1
,α
2
,α
3
且r(A)=3,设α
1
+α
2
=
,α
2
+α
3
=
,求方程组AX=b的通解.
选项
答案
因为r(A)=3,所以方程组AX=b的通解形式为kξ+η,其中芒为AX=0的一个基础解系,η为方程组AX=b的特解,根据方程组解的结构的性质, ξ=(α
2
+α
3
)-(α
1
+α
2
)=α
3
-α
1
=[*], η=[*](α
1
+α
2
)=[*], 所以方程组AX=b的通解为[*](k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/DBA4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,一α2),则P—1AP=()
设y=f(t),u=∫0te—s2,u=g(x),其中f,g均二阶可导且g’(x)≠0,求与。[img][/img]
微分方程的通解为______。
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0。证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点。
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明:在开区间(a,b)内至少存在一点ξ,使。
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=()
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
若曲线C:y=f(x)由方程2x-y=2arctan(y-x)确定,则曲线C在点处的切线方程是y=___________.
随机试题
二甲双胍的不良反应是
电流互感器安装如需吊芯检查,预算定额的()应进行调整。
城市桥梁施工方案中的关键问题是( )。
下列关于做市商与经纪人的区别说法错误的是()。
基金销售机构应在基金投资者首次购买基金时对已购买基金投资者的风险承受能力当面进行调查和评价,而不能以信函或网络的方式进行调查。()
甲向某编辑部乙去函,询问该编辑部是否出版了有关律师考试的教材和参考资料,乙立即向甲邮寄了律师考试资料五本,共120元,甲认为该书不符合其需要,拒绝接受,双方为此发生了争议。从本案来看()。
下列有关商品销售收入确认和计量方法的表述中,正确的有()。
《刑法》第385条规定:国家工作人员利用职务上的便利,索取他人财物的,或者非法收受他人财物,为他人谋取利益的,是受贿罪。国家工作人员在经济往来中,违反国家规定,收受各种名义的回扣、手续费,归个人所有的,以受贿论处。第388条规定:国家工
TeachingEnglishthroughChildren’sLiteratureI.Acase:charactersinchildren’sliterature【T1】______themlearn【T1】______Eng
A、LondonBridge.B、BuckinghamPalace.C、St.Paul’sCathedral.D、TwinsTower.C旅行交通类,事实细节题。女士说从这儿可以见到许多著名的伦敦地标,如伊丽莎白塔、议会大厦、圣保罗大教堂
最新回复
(
0
)