首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=,α2+α3=,求方程组AX=b的通解.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=,α2+α3=,求方程组AX=b的通解.
admin
2019-08-23
54
问题
四元非齐次线性方程组AX=b有三个解向量α
1
,α
2
,α
3
且r(A)=3,设α
1
+α
2
=
,α
2
+α
3
=
,求方程组AX=b的通解.
选项
答案
因为r(A)=3,所以方程组AX=b的通解形式为kξ+η,其中芒为AX=0的一个基础解系,η为方程组AX=b的特解,根据方程组解的结构的性质, ξ=(α
2
+α
3
)-(α
1
+α
2
)=α
3
-α
1
=[*], η=[*](α
1
+α
2
)=[*], 所以方程组AX=b的通解为[*](k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/DBA4777K
0
考研数学二
相关试题推荐
设平面区域D由直线x=3y,y=3x及x+y=8围成。计算
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
已知矩阵只有一个线性无关的特征向量,那么A的三个特征值是______。
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt。当x取何值时,F(x)取最小值;
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt。证明F’(x)单调增加;
设n阶矩阵证明行列式|A|=(n+1)an。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明:在开区间(a,b)内g(x)≠0;
求无穷积分.J=
设z=f(etsint,tant),求.
设z=f(etsint,tant),求.
随机试题
A.分泌性腹泻B.渗出性腹泻C.吸收不良性腹泻D.动力性腹泻E.渗透性腹泻下述疾病分别属于何种腹泻细菌学痢疾()
急性胰腺炎时,关于淀粉酶下列说法正确的是
小建中汤中配伍芍药的意义是()
一英国公民在中国境内居留期间,未持有效旅行证件前往不对外国人开放的地区旅行,被当地县公安机关处以7天的拘留处罚。该英国公民对此不服,前往当地一家律师事务所进行咨询。以下咨询意见正确的是哪些?
按照现行法律法规的有关规定,在以下土地权利中,可以抵押的有()。
债券的发行价格()
英国曾经流传这样一个关于战争的小故事:“少了一颗铁钉,丢了一只马掌;少了一只马掌,摔了一匹战马;摔了一匹战马,死了一位将军;死了一位将军,败了一场战役;败了一场战役,丢了一个国家。所以,少了一颗铁钉导致了一个国家的灭亡。”以下哪项论述与这个故事使用了相同
要了解英国君主立宪制确立之初的情况,下列文献中可供参考的是()。
我们都有过不由自主的时刻,就好像有一种我们所无法控制的力量,违背我们的意志,支配我们做下平时不会做的事,说出平时不会说的话。人越年轻,不由自主的时候就有可能越多,而会使我们陷入不由自主境地的导火索,往往都是由过往事件引发的情绪。它们的逻辑关系是:过往某个重
WaterandCitiesVocabularyandExpressionssanitationmalariajeopardizetenurediarrheacholeraWhatisthe
最新回复
(
0
)