首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合概率密度为 求:(Ⅰ)系数A; (Ⅱ)(X,Y)的联合分布函数; (Ⅲ)边缘概率密度; (Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
设二维随机变量(X,Y)的联合概率密度为 求:(Ⅰ)系数A; (Ⅱ)(X,Y)的联合分布函数; (Ⅲ)边缘概率密度; (Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
admin
2018-01-12
98
问题
设二维随机变量(X,Y)的联合概率密度为
求:(Ⅰ)系数A;
(Ⅱ)(X,Y)的联合分布函数;
(Ⅲ)边缘概率密度;
(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
选项
答案
(Ⅰ)根据分布函数的性质 ∫
—∞
+∞
∫
—∞
+∞
f(x,y)dxdy=∫
0
+∞
∫
0
+∞
Ae
—(2x+3y)
=[*]=1,解得A=6。 (Ⅱ)将A=6代入得(X,Y)的联合概率密度为 [*] 所以当x>0,y>0时, F(x,y)=∫
0
x
∫
0
x
6e
—(2x+3y)
dudυ=6∫
0
x
e
—2u
du∫
0
y
e
—3υ
dυ=(1一e
—2x
)(1一e
—3y
), 而当x和y取其它值时,F(x,y)=0。 综上所述,可得联合概率分布函数为 [*] (Ⅲ)当x>0时,X的边缘密度为 f
X
(x)=∫
0
+∞
6e
—(2x+3y)
dy=2e
—2x
, 当x≤0时,f
X
(x)=0。因此X的边缘概率密度为 [*] 同理可得Y的边缘概率密度函数为 [*] (Ⅳ)根据公式 [*] 已知R:x>0,y>0,2x+3y<6,将其转化为二次积分,可表示为 P[(X,Y)∈R]=[*]6e
—(2x+3y)
dxdy=6∫
0
3
e
—2x
[*]e
—3y
dy=2∫
0
3
(e
—2x
—e
—6
)dx=1一7e
—6
≈0.983。
解析
转载请注明原文地址:https://kaotiyun.com/show/PtX4777K
0
考研数学三
相关试题推荐
已知总体X是离散型随机变量,X可能取值为0,1,2且P{X=2}=(1一θ)2,E(X)=2(1一θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估
已知随机变量X1与X2相互独立且分别服从参数为λ1,λ2的泊松分布,P{X1+X2>0}=1—e-1,则E(X1+X2)2=______.
随机变量X一N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
已知随机变量X与Y的相关系数大于零,则()
已知随机变量X与Y的联合概率分布为又P{X+Y=1}=0.4,则α=_______;β=______;P{X+Y<1}=_______;P{X2Y2=1}=_______.
设随机变量X服从n个自由度的t分布,定义tα满足P{X≤tα}=1一α(0<α<1).若已知P{|X|>x}=b(b>0),则z=_______.
曲线
微分方程y’+ytanx=cosx的通解为___________.
将下列函数展开为x的幂级数.
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
随机试题
A.枸杞B.当归C.阿胶D.牛膝E.党参道地药材产于山西的是()
脚手架纵向水平杆接长宜采用对接,也可采用搭接,搭接长度不应小于500mm。()
某空调器的温度设置为25℃,当室温超过25℃后,它便开始制冷,此时红色指示灯亮,并在显示屏上显示“正在制冷”字样,那么:
生产经营过程中发生的火灾事故,其后果严重程度难以预测,同类火灾事故并不一定产生完全相同的后果。这种观点符合()原则。
现实中套期保值操作的效果更可能是()。
2000年承包经营所得应缴纳的个人所得税为( )元。退休工资、代扣代缴手续费应纳税款为( )元。
一般资料:求助者,女性,48岁,公司职员。案例介绍:求助者的儿子在市重点中学读书,学习成绩一直非常优秀。高考前,儿子自己放弃了某名牌大学提前录取的机会,坚持参加高考,但发挥失常,只被普通院校录取。求助者非常生气,怨自己的孩子不争气,不给自己涨面子,
《中华人民共和国教育法》规定,明知校舍或者教育教学设施有危险,而不采取措施,造成人员伤亡或者重大财产损失的,对直接负责的主管人员和其他直接责任人员,依法追究()。
阅读下面的材料,请自选角度,自拟题目,写一篇不少于600字的文章。除诗歌外,文体不限。2014年3月17日晚,周口市郸城县秋渠一中校长张伟连续工作三个昼夜,因过度劳累突发脑干出血.经全力抢救无效,不幸去世,年仅42岁。从教20年来,张伟同志在农村教育教学
关于人与自然界的辩证关系的论述。正确的有()
最新回复
(
0
)