首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有( )
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有( )
admin
2021-01-25
65
问题
设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):A
T
Ax=0,必有( )
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解。
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解。
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解。
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解。
答案
A
解析
若α是方程组(Ⅰ):Ax=0的解,即Aα=0,两边左乘A
T
,得A
T
Aα=0,即α也是方程组(Ⅱ):A
T
Ax=0的解,即(Ⅰ)的解也是(Ⅱ)的解。
若β是方程组(Ⅱ):A
T
Ax=0的解,即A
T
Aβ=0,两边左乘β
T
得β
T
A
T
Aβ-=(Aβ)
T
Aβ=0。Aβ是一个向量,设Aβ=(b
1
,b
2
,…,b
n
)
T
,则
(Aβ)
T
Aβ=
b
i
2
=0。
故有b
i
=0,i=1,2,…,n,从而有Aβ=0,即β也是方程组(Ⅰ):Ax=0的解。
转载请注明原文地址:https://kaotiyun.com/show/Ptx4777K
0
考研数学三
相关试题推荐
[2016年]设其中D1={(x,y)|0≤x≤1,0≤y≤1},D3={(x,y)|0≤x≤1,x2≤y≤1),则().
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设f(x)二阶连续可导,f′(0)=0,且则().
设随机事件A与B互不相容,0<P(A)<1,0<P(B)<1,记X与Y的相关系数为ρ,则()
累次积分f(x2+y2)dx(R>0)化为极坐标形式的累次积分为()
双纽线(x2+y2)2=x2一y2所围成的区域面积可表示为().
[2004年]设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令求X与Y的相关系数ρXY;
(2014年)设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4z+excosy)e2x。若f(0)=0,f’(0)=0,求f(u)的表达式。
(1988年)设,一∞<x<+∞,则1)f’(x)=______.2)f(x)的单调性是______.3)f(x)的奇偶性是______.4)其图形的拐点是______.5)凹凸区间是______.6)水平渐近线是
随机试题
如果企业闲置设备很多,管理效率低下,则表明固定资产周转率
在流行病学研究中,选入到研究中的研究对象与没有被选入者特征上的差异所造成的系统误差是
关于Shift阿尔辛蓝地衣红染色法的叙述,错误的是
半数以上股份被另一公司持有并受其控制的公司为()。
1998年3月1日,甲将自己的一套住房出租给乙,双方签订房屋租赁合同并约定租期22年。2017年3月1日,甲又将该房屋抵押给丙,并办理了抵押登记。2018年3月1日,丙行使抵押权拍卖该房屋,丁以100万元的价格购得该套房屋并办理了过户手续。现在,丁要求乙搬
本票可以是远期的,远期本票像远期汇票一样也存在承兑行为。()
根据凯恩斯的流动性偏好理论,决定货币需求的动机包括()。Ⅰ.交易动机Ⅱ.预防动机Ⅲ.储蓄动机Ⅳ.投机动机
行为锚定等级评价是一种()。这种绩效考核最大的缺点在于()。
--Doyouknowwhoinvented______telephone?--No,Butitisreally______telephone?
Whatdoesyourdoctorusuallyadviseyoutodowhenyou’requitesick?To______.Whatwillkeepasickmanworkingwhenhesh
最新回复
(
0
)