设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有( )

admin2021-01-25  47

问题 设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有(    )

选项 A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解。
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解。
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解。
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解。

答案A

解析 若α是方程组(Ⅰ):Ax=0的解,即Aα=0,两边左乘AT,得ATAα=0,即α也是方程组(Ⅱ):ATAx=0的解,即(Ⅰ)的解也是(Ⅱ)的解。
    若β是方程组(Ⅱ):ATAx=0的解,即ATAβ=0,两边左乘βT得βTATAβ-=(Aβ)TAβ=0。Aβ是一个向量,设Aβ=(b1,b2,…,bn)T,则
    (Aβ)TAβ=bi2=0。
    故有bi=0,i=1,2,…,n,从而有Aβ=0,即β也是方程组(Ⅰ):Ax=0的解。
转载请注明原文地址:https://kaotiyun.com/show/Ptx4777K
0

最新回复(0)