首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是 ( )
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是 ( )
admin
2019-02-18
72
问题
n维向量组α
1
,α
2
,…,α
s
(3≤s≤n)线性无关的充要条件是 ( )
选项
A、存在一组全为零的数忌k
1
,k
2
,…,k
s
,使k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
B、α
1
,α
2
,…,α
s
中任意两个向量都线性无关
C、α
1
,α
2
,…,α
s
中任意一个向量都不能由其余向量线性表出
D、存在一组不全为零的数k
1
,k
2
,…,k
s
,使k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0
答案
C
解析
可用反证法证明之.必要性:假设有一向量,如α
s
可由α
1
,α
2
,…,α
s-1
线性表出,则α
1
,α
2
,…,α
s
线性相关,这和已知矛盾,故任一向量均不能由其余向量线性表出,充分性:假设α
1
,α
2
,…,α
s
线性相关
至少存在一个向量可由其余向量线性表出,这和已知矛盾,故α
1
,α
2
,…,α
s
线性无关.(A)对任何向量组都有0α
1
+0α
2
+…+0α
s
=0的结论.(B)必要但不充分,如α
1
=[0,1,0]
T
,α
2
=[1,1,0]
T
,α
3
=[-1,0,0]
T
任意两个向量均线性无关,但α
1
,α
2
,α
3
线性相关.(D)必要但不充分.如上例α
1
+α
2
+α
3
≠0,但α
1
,α
2
,α
3
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/Q4M4777K
0
考研数学一
相关试题推荐
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为k=,求y=y(x)·
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为ν0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg·s2/m2),在垂直方向的比例系数为ky(kg·s2/m2),设飞机的质量
设对一切的x,有f(x+1)=2f(x),且当x∈[0,1]时f(x)=x(x2一1),讨论函数f(x)在x=0处的可导性.
设随机变量X的密度函数为f(x)=.(1)求常数A;(2)求X在(0,)内的概率;(3)求X的分布函数F(x).
求曲线y=x2一2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
函数μ=x2-2yz在点(1,一2,2)处的方向导数最大值为_________.
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)2的矩阵是______·
证明不等式3χ<tanχ+2sinχ,χ∈(0,)
设I=,则I,J,K的大小关系是()
设函数f(x,y)可微分,且对任意的x,y都有<0,则使不等式f(x1,y1)>f(x2,y2)成立的一个充分条件是()
随机试题
革兰氏阳性菌细胞壁的特殊组分为
病人患类风湿性关节炎,应与其他任何类型关节炎鉴别,最简单的区别是
患者男,46岁,足底刺伤后出现肌肉强直,全身痉挛,诊断为破伤风。下列护理措施中与控制痉挛无关的是
关于钢板桩围堰施工的说法,正确的有()。
下列时间属于上海证券交易所接受大宗交易的时间的是()。
某跨国汽车公司2007年进入中国市场,业务范围不断扩大,不仅在汽车制造领域站稳脚跟,而且通过并购、联合等多种形式,使业务遍及家电、医药、建筑等多个领域。在汽车制造领域,该公司业绩表现尤为突出,不断针对不同类型人群,推出具有独特功能和款式的新型号汽车,占领不
因共同海损提起的诉讼,只能由船舶最先到达地或者航程终止地的法院管辖。()
下列关于陶行知的生活教育思想内涵说法正确的是()
Halloweeniscelebratedon
A、Afinalexamtheyaregoingtotake.B、Atoughproblemthattheycannotsolve.C、Ajourneytheyareabouttotake.D、Something
最新回复
(
0
)