已知数列{an},a2=2,数列{bn}为等差数列,bn=an+2-an-n,且b2=-1,b5=5,则a10=_______.

admin2015-12-09  0

问题 已知数列{an},a2=2,数列{bn}为等差数列,bn=an+2-an-n,且b2=-1,b5=5,则a10=_______.

选项

答案42

解析 由{bn}为等差数列,b2=-1,b5=5可得,d==2,b1=b2-d=-1-2=-3,则bn=b1+(n-1)d=-3+2(n-1)=2n-5,所以an+2-an=bn+n=3n-5,由叠加法得,(a10-a8)+(a8-a6)+(a6-a4)+(a4-a2)=19+13+7+1=40,即a10=40+a2=40+2=42.
转载请注明原文地址:https://kaotiyun.com/show/QHGq777K
0

最新回复(0)