首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
admin
2016-10-24
49
问题
三元二次型f=X
T
AX经过正交变换化为标准形f=y
1
2
+y
2
2
一2y
3
2
,且A
*
+2E的非零特征值对应的特征向量为α
1
=
求此二次型.
选项
答案
因为f=X
T
AX经过正交变换后的标准形为f=y
1
2
+y
2
2
一2y
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=一2.由|A|=λ
1
λ
2
λ
3
=一2得A
*
的特征值为μ
1
=μ
2
=一2,μ
3
=1,从而A
*
+2E的特征值为0,0,3,即α
1
为A
*
+2E的属于特征值3的特征向量,故也为A的属于特征值λ
3
=一2的特征向量,令A的属于特征值λ
1
=λ
2
=1的特征向量为α=[*],因为A为实对称矩阵,所以有α
1
T
α=0,即x
1
+x
3
=0故矩阵A的属于λ
1
=λ
2
=1的特征向量为 α
2
=[*] 令P=(α
2
,α
3
,α
1
)=[*],得 [*] 所求的二次型为 f=X
T
AX=一[*]x
3
2
+x
2
2
一[*]x
3
2
一3x
1
x
2
解析
转载请注明原文地址:https://kaotiyun.com/show/QIH4777K
0
考研数学三
相关试题推荐
写出函数f(x)=x(-π≤x<π)的傅里叶级数,并利用此展开式求级数的和.
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:存在一点ε∈(0,a),使f(ε)+εfˊ(ε)=0.
证明:曲面上任何点处的切平面在各坐标轴上的截距之和为常值.
设常数a>0,则级数().
设f(x)在[a,b]上连续,且
设y=f(x)在x=x。的某邻域内具有三阶连续导数,如果fˊ(x。)=0,f〞(x。)=0,而f〞ˊ(x。)≠0,试问x=x。是否为极值点?为什么?又(x。,f(x。))是否为拐点?为什么?
设f(x),g(x)是C(2)类函数,证明:函数u=f(s+at)+g(s-at)满足波动方程
(1)如果点P(x,y)以不同的方式趋于Po(xo,yo)时,f(x,y)趋于不同的常数,则函数f(x,y)在po(xo,yo)处的二重极限____________.(2)函数f(x,y)在点(xo,yo)连续是函数在该点处可微分的___________
设X,Y是两个随机变量,且P{x≤1,Y≤1}=4/9,P{x≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
随机试题
A.热毒证B.暑湿证C.暑热证D.湿热证E.阴暑证香薷散的主治病证是
A.阴茎套B.宫内节育器C.复方短效口服避孕药D.绝育术E.安全期避孕绝经过渡期避孕方法不应选用
痛风可分为()两种类型
适用于二级和二级以下公路的粒料类基层有()。
下列有关质量事故调查的说法正确的是()。
导致水体富营养化的物质包括()。
期货交易具有( )的特点,吸引了众多投机者的参与。
基金分类的意义在于()。
可以计算其利润的组织单位才是真正意义上的利润中心。()
根据下面材料回答下列题。2010年大陆地区总人口性别比例(以男性人口为100,男性对女性的比例)为()。
最新回复
(
0
)