首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶实对称矩阵A正定的充分必要条件是( )
n阶实对称矩阵A正定的充分必要条件是( )
admin
2020-03-01
42
问题
n阶实对称矩阵A正定的充分必要条件是( )
选项
A、二次型x
T
Ax的负惯性指数为零。
B、存在可逆矩阵P使P
一1
AP=E。
C、存在n阶矩阵C使A=C
一1
C。
D、A的伴随矩阵A
*
与E合同。
答案
D
解析
选项A是必要不充分条件。这是因为,(A)=p+q≤n,当q=0时,有r(A)=p≤n。此时有可能p<n,故二次型x
T
Ax不一定是正定二次型。因此矩阵A不一定是正定矩阵。例如。f(x
1
,x
2
,x
3
)=x
1
2
+5x
3
2
。选项B是充分不必要条件。这是因为P
一1
AP=E表示A与E相似,即A的特征值全是1,此时A是正定的。但只要A的特征值全大于零就可保证A正定,因此特征值全是1是不必要的。选项C中的矩阵C没有可逆的条件,因此对于A=C
T
C不能说A与E合同,也就没有A是正定矩阵的结论。例如
显然矩阵不正定。关于选项D,由于A正定→A
一1
正定→A
*
正定→A
*
与E合同,所以D是充分必要条件。
转载请注明原文地址:https://kaotiyun.com/show/QNA4777K
0
考研数学二
相关试题推荐
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
函数f(χ)=|χsinχ|ecosχ,-∞<χ<+∞是().
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
设A是n×n矩阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
设A为n阶可逆矩阵,A是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
微分方程的一个特解应具有形式(其中a,b为常数)()
“f(x)在点a连续”是|f(x)|在点a处连续的()条件.
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
已知f(x)在x=0的某个邻域内连续,且f(0)=0,=2,则在点x=0处f(x)()
实对阵矩阵A与矩阵B=合同,则二次型xTAx的规范形为______。
随机试题
麻醉前用药的目的是什么?
中医治疗感染性心内膜炎中的风热外袭证,应首选的方剂是
胃主升举,以升为顺。()
(2017年国家司法考试真题)杨青(15岁)与何翔(14岁)两人经常嬉戏打闹,一次,杨青失手将何翔推倒,致何翔成了植物人。当时在场的还有何翔的弟弟何军(11岁)。法院审理时,何军以证人身份出庭。关于何军作证,下列哪些说法不能成立?()
FIDIC《施工合同条件》中,业主向承包商提供支付保函( )。
甲公司为上海证券交易所上市公司,2014年1~5月份发生了下列事项:(1)1月5日,控股股东A公司通过上海证券交易所集中竞价交易增持公司股份500万股,占公司已发行股份总数的0.11%;A公司拟在未来12个月内择机增持公司股份,累计增持比例不超过公司已发
彬彬有礼
Whattimeisitnow?
Itisbedtime.Lilyshouldgotobed.It’stime______Lily______bed.
Thecarwasrepairedbutnottotheowner’s______(satisfy).
最新回复
(
0
)