首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
admin
2019-05-08
61
问题
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]有 f(x)=f(c)+f’(c)(x-c)+[*]f"(ξ)(x-c)
2
, (*) 其中ξ=c+θ(x-c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f’(c)(-c)+[*]f"(ξ)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f’(c)(1-c)+[*]f"(ξ
2
)(1-c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)-f(0)=f’(c)+[*][f"(ξ2)(1-c)
2
-f"(ξ
1
)c
2
]. 从而f’(c)=f(1)-f(0)+[*][f"(ξ
1
)c
2
-f"(ξ
2
)(1-c)
2
],两端取绝对值并放大即得 [*] 其中利用了对任何c∈(0,1)有(1-c)
2
≤1-c,c
2
≤c,于是(1-c)
2
+c
2
≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/QbJ4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,其分布函数分别为FX(x)与FY(y),则Z=max{X,Y}的分布函数FZ(z)是()
假设随机变量X1,X2,X3,X4相互独立且都服从0一1分布:P{Xi=1}=p,P{Xi=0}=1一p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
设A=有三个线性无关的特征向量,求a及An.
设随机变量X的密度函数为f(x)=(a>0,A为常数),则P{a<X<a+b)的值().
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
λ4+λ3+2λ2+3λ+4.1按第1列展开,得行列式为=λ4+λ3+2λ2+3λ+42首先把第2列的λ倍加到第1列上去,其次把第3列的λ2倍加到第1列上去,最后把第4列的λ3加到第1列上去,然后将行列式按第1列展开,得行列式为=-(4+3λ
在全概率公式P(B)=P(Ai)P(B|Ai)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,还可以将其他条件改为()
随机试题
下列表述符合李商隐的有( )
代位继承适用的范围是()
皮肤的结构包括
多发生于儿童,为阵发性剧烈痉挛性咳嗽。当痉挛性咳嗽终止时伴有鸡鸣样吸气吼声的是()
分项工程评分值与()无关。
高危行业企业应当建立健全安全生产费用的(),明确安全生产费用的提取和使用的管理程序。
甲投资基金利用市场公开信息进行价值分析和投资,在下列效率不同的资本市场中,该投资基金可获取超额收益的有()。
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
Thispartistotestyourabilitytodopracticalwriting.YouarerequiredtowriteaMemoaccordingtothefollowinginstructi
"Avoidtherush-hour"mustbethesloganoflargecitiesallovertheworld.Whereveryoulook,it’speople,people,people.The
最新回复
(
0
)