首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设 (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
admin
2017-06-08
56
问题
设
(1)问k为何值时A可相似对角化?
(2)此时作可逆矩阵U,使得U
-1
AU是对角矩阵.
选项
答案
(1)求A的特征值: [*] 于是A的特征值为1(一重)和-1(二重). 要使A可对角化,只需看特征值-1.要满足3-r(A+E)=2,即r(A+B)=1, [*] 得k=0, [*] (2)求属于-1的两个线性无关的特征向量,即求(A+E)X=0的基础解系: [*] 得(A+E)X=0的同解方程组 2x
1
+x
2
-x
3
=0 得基础解系η
1
=(1,0,2)
T
,η
2
=(0,1,1)
T
. 求属于1的一个特征向量,即求(A-E)X=0的一个非零解: [*] 得(A-E)X=0的同解方程组 [*] 得解η
3
=(1,0,1)
T
. 令U=(η
1
,η
2
,η
3
),则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Qct4777K
0
考研数学二
相关试题推荐
[*]
e/2-1
设A,B为同阶可逆矩阵,则().
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
不等式的解集(用区间表示)为[].
当x→0时,下列变量中哪些是无穷小量?哪些是无穷大量?哪些既不是无穷小量也不是无穷大量?
若f(x)是连续函数,证明
随机试题
樵歌体
患者,女性,66岁。高血压病史多年。曾多次发生短时间肢体麻木或眩晕,持续几分钟后恢复正常,发作时曾有跌倒现象。目前最重要的护理措施是
后张法预制梁(板)的施工要点不包括( )。
施工单位在施工过程中要加强质量检验工作,认真执行“三检制”,切实做好工程质量的全过程控制。这里所称的“三检制”是指()。
《中华人民共和国建筑法》规定,有()情形,建设单位应当按照国家有关规定办理申请批准手续。
一般纳税人发生的下列经济行为中,可以开具增值税专用发票的是()。
李某系A市建设银行某储蓄所记账员。2002年3月20日下午下班时,李某发现本所出纳员陈某将2万元营业款遗忘在办公桌抽屉内(未锁)当日下班后,李某趁所内无人之机,返回所内将该2万元取出,用报纸包好后藏到自己办公桌下面的垃圾袋中,并用纸箱遮住垃圾袋。次日上午案
洋务派创办的军工企业有
Readthefollowingtext.Arethesentences16-22"right"or"wrong"?Ifthereisnotenoughinformationtoanswer"Right"or"wr
Athirdofofficeworkerswouldrathergrabafewminutes【C1】______sleepthanbreakfast,accordingtoasurveythatestimatedpo
最新回复
(
0
)