首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设 (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
admin
2017-06-08
69
问题
设
(1)问k为何值时A可相似对角化?
(2)此时作可逆矩阵U,使得U
-1
AU是对角矩阵.
选项
答案
(1)求A的特征值: [*] 于是A的特征值为1(一重)和-1(二重). 要使A可对角化,只需看特征值-1.要满足3-r(A+E)=2,即r(A+B)=1, [*] 得k=0, [*] (2)求属于-1的两个线性无关的特征向量,即求(A+E)X=0的基础解系: [*] 得(A+E)X=0的同解方程组 2x
1
+x
2
-x
3
=0 得基础解系η
1
=(1,0,2)
T
,η
2
=(0,1,1)
T
. 求属于1的一个特征向量,即求(A-E)X=0的一个非零解: [*] 得(A-E)X=0的同解方程组 [*] 得解η
3
=(1,0,1)
T
. 令U=(η
1
,η
2
,η
3
),则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Qct4777K
0
考研数学二
相关试题推荐
[*]
[*]
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设,证明fˊ(x)在点x=0处连续.
证明曲线y=x4-3x2+7x-10在x=1与x=2之间至少与x轴有—个交点.
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
随机试题
Jackcan’tfindhisdictionary.Hemusthave______itintheclassroom.
精神分裂症最常见的幻觉形式是
S=(D1—D2)/H=K/H中,关于H的叙述,错误的是
关于灵敏度和鉴别阈的说法正确的是___________。
在城市规划区内进行建设需要申请用地的,建设单位在依法办理用地批准手续前,必须先取得该工程的()。
请简述导游人员提供心理服务的一般方法。
【2015.河南郑州】陶冶的主要方式有()。
学生的受教育权主要有()。
春节临近,区政府准备开展一次慰问基层工作人员的活动,领导让你组织,你怎么开展?
根据下列资料,回答下列问题。2014年1~6月份,我国民间固定资产投资138607亿元,同比增长20.1%,增速比1~5月份加快0.2个百分点。民间固定资产投资占全国固定资产投资的比重为65.1%,与1~5月份持平。分地区看,东部地区
最新回复
(
0
)