首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x,令P=(x,Ax,A2X) (1)求3阶矩阵B,使A=PBP-1;(2)求|A+E|的值.
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x,令P=(x,Ax,A2X) (1)求3阶矩阵B,使A=PBP-1;(2)求|A+E|的值.
admin
2017-07-10
69
问题
已知3阶矩阵A与3维列向量x,使x,Ax,A
2
x线性无关,且满足A
3
x=3Ax一2A
2
x,令P=(x,Ax,A
2
X)
(1)求3阶矩阵B,使A=PBP
-1
;(2)求|A+E|的值.
选项
答案
(1)设[*]则由AP=PB得[*]上式可写为 Ax=a
1
x+b
1
Ax+c
1
A
2
x, (1) A
2
x=a
2
x+b
2
Ax+c
2
A
2
x, (2)A
3
x=a
3
x+b
3
Ax+c
3
A
2
x. (3) 将A
3
x=3Ax一2A
2
x代入(3)式得3Ax-2A
2
x=a
3
x+b
3
Ax+c
3
A
2
x. (4) 整理得 a
1
x+(b
1
-1)Ax+c
1
A
2
x=0, a
2
x+b
2
Ax+(c
2
—1)A
2
x=0, a
3
x+(b
3
-3)Ax+(c
3
+2)A
2
x=0. 由于x,Ax,A
2
x线性无关,故 a
1
=c
1
=0,b
1
=1; a
2
=b
2
=0,c
2
=1; a
3
=0,b
3
=3,x
3
=-2. 从而[*](2)由(1)知A与B相似,故A+E与B+E也相似,从而[*]
解析
本题是向量与矩阵的综合题,主要考查向量组的线性相关性.
转载请注明原文地址:https://kaotiyun.com/show/Qqt4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 D
设在点x=1处可导,求a,b的值.
求下列极限:
计算二重积分,其中D是由直线y=x-1和抛物线y2=2x+6所围成的闭区域.
当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n=________.
某型号电子元件寿命(单位:h)服从分布N(160,202),随机抽四件,求其中没有一件寿命小于180h的概率.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
(1997年试题,三(5))已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x一e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
设X,Y是离散型随机变量,其联合概率分布为P{X=xi,Y=yj}=pij(i,j=1,2,…),边缘概率分别为piX和pjY(i,j=1,2,…),则X与Y相互独立的充要条件是pij=piXpjY(i,j=1,2,…)
随机试题
在食品加工过程中,加入的水可以不在配料表中标示。
进程的并发执行可能会破坏进程顺序执行时的封闭性和_______。
居则曰:“不吾知也!”如或知尔,则何以哉?
患儿,女性,11个月。多汗、烦躁、睡眠不安,可见肋膈沟,下肢轻度“O”形腿,血清钙稍低,血磷降低,碱性磷酸酶增高,其佝偻病应处于
下列哪种内脏损伤后,可暂无明显症状,而在伤后数日或数周后可出现急性大出血的危险症状:
采取差别化战略的途径有()。
下列项目应列入工程结算收入的是()
某地甲企业2016年1——5月份,发生下列有关事项:(1)2016年1月,甲企业从其一般存款账户支取工资、奖金120万元,并支取现金10万元。(2)2016年3月,甲企业将20万元的销货收入存入其单位卡账户,并从单位卡中支取现金5万元。
下列关于规范性文件的特点表述不正确的是()。
凡是能提起行政诉讼的行政行为都能申请行政复议,凡是能申请行政复议的行政行为也都能提起行政诉讼。()
最新回复
(
0
)