首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x,令P=(x,Ax,A2X) (1)求3阶矩阵B,使A=PBP-1;(2)求|A+E|的值.
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x,令P=(x,Ax,A2X) (1)求3阶矩阵B,使A=PBP-1;(2)求|A+E|的值.
admin
2017-07-10
51
问题
已知3阶矩阵A与3维列向量x,使x,Ax,A
2
x线性无关,且满足A
3
x=3Ax一2A
2
x,令P=(x,Ax,A
2
X)
(1)求3阶矩阵B,使A=PBP
-1
;(2)求|A+E|的值.
选项
答案
(1)设[*]则由AP=PB得[*]上式可写为 Ax=a
1
x+b
1
Ax+c
1
A
2
x, (1) A
2
x=a
2
x+b
2
Ax+c
2
A
2
x, (2)A
3
x=a
3
x+b
3
Ax+c
3
A
2
x. (3) 将A
3
x=3Ax一2A
2
x代入(3)式得3Ax-2A
2
x=a
3
x+b
3
Ax+c
3
A
2
x. (4) 整理得 a
1
x+(b
1
-1)Ax+c
1
A
2
x=0, a
2
x+b
2
Ax+(c
2
—1)A
2
x=0, a
3
x+(b
3
-3)Ax+(c
3
+2)A
2
x=0. 由于x,Ax,A
2
x线性无关,故 a
1
=c
1
=0,b
1
=1; a
2
=b
2
=0,c
2
=1; a
3
=0,b
3
=3,x
3
=-2. 从而[*](2)由(1)知A与B相似,故A+E与B+E也相似,从而[*]
解析
本题是向量与矩阵的综合题,主要考查向量组的线性相关性.
转载请注明原文地址:https://kaotiyun.com/show/Qqt4777K
0
考研数学二
相关试题推荐
[*]
试证,当|x|<1时,有
计算下列函数的偏导数:
证明曲线y=x4-3x2+7x-10在x=1与x=2之间至少与x轴有—个交点.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
试证明函数f(x)=在区间(0,+∞)内单调增加.
设f(x)在(-1,1)内具有二阶连续导数且f"(x)≠0,试证:(1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2).
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
设X,Y是离散型随机变量,其联合概率分布为P{X=xi,Y=yj}=pij(i,j=1,2,…),边缘概率分别为piX和pjY(i,j=1,2,…),则X与Y相互独立的充要条件是pij=piXpjY(i,j=1,2,…)
随机试题
高效液相色谱法用于定量的参数是
缺陷返修部位的焊缝表面,应修磨使之与原焊缝基本一致,并且圆滑过渡,以减少应力集中提高抗裂性能。
简述环境污染侵权的归责原则与构成要件。
急性感染性心内膜炎最常见的致病菌是
脾失健运,水湿内停,可致邪热犯肺,煎津为痰,多见
2014年修订的环境保护法,“保护环境”被确立为我国的一项:()
要打开图标所代表的对象,正确的操作是()。
下列论述属于定性研究特点的是( )。
上述的咨询片段所采用的技术最有可能的是()。在咨询的最后几句话中,心理咨询师主要是帮助求助者()。
Thisisonlya_____agreement:nothingseriousconcludedyetbyfar.
最新回复
(
0
)