首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
admin
2017-04-11
36
问题
设齐次线性方程组
其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
选项
答案
方程组的系数行列式[*] (1)当a≠b且a≠(1一n)b时,方程组仅有零解. (2)当a=b时,对系数矩阵A作初等行变换,有[*]原方程组的同解方程组为x
1
+x
2
+…+x
n
=0,其基础解系为α
1
=(一1,1,0,…,0)
T
,α
2
=(一1,0,1,…,0)
T
,…,α
n-1
=(一1,0,0,…,1)
T
,故方程组的全部解为x=k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,其中k
1
,k
2
,…,k
n-1
为任意常数. (3)当a=(1一n)b时,对系数矩阵A作初等行变换,有[*]原方程组的同解方程组为[*]故方程组的全部解为x=k(1,1,…,1)
T
,其中k为任意常数.
解析
本题主要考查齐次线性方程组是否有非零解的判定方法及用矩阵的初等行变换求解方程组的方法.设该方程组的系数矩阵为A,当r(A)=n时,Ax=0仅有零解;当r(A)<n时,Ax=0有无穷多解.本题讨论a,b为何值时,r(A)=n或r(A)<n.当r(A)<n时,通常用初等行变换求解.
转载请注明原文地址:https://kaotiyun.com/show/Qtt4777K
0
考研数学二
相关试题推荐
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=________.
某公司每年的工资总额比上一年增加20%的基础上再追加2百万元,若以Wt表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是________。
设y=(C1+C2x)e2x是某二阶常系数线性微分方程的通解,求对应的方程。
设线性无关函数y1(x),y2(x),y3(x)都是二阶非齐次线性方程y"+P(x)y’+Q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是________。
设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex求出F(x)的表达式。
求齐次方程满足y|x=1=2的特解。
下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ε
随机试题
下列关于茅盾小说《子夜》艺术特色的叙述,正确的有()
急性胰腺炎时,血清淀粉酶升高的规律是
二氧化氯消毒的特点是
下列说法正确的是:()
某企业采用先进先出法计算发出材料的成本。2012年3月1日结存A材料200吨,每吨实际成本为200元;3月4日和3月17日分别购进A材料300吨和400吨,每吨实际成本分别为180元和220元;3月10日和3月27分别发出A材料400吨和350吨。A材料月
公民、法人或者其他组织认为海关具体行政行为侵犯其合法权益的,可以在自知道该具体行政行为之日起_________向海关提出行政复议申请。
2019年1月,甲、乙、丙、丁共同出资设立一有限合伙企业A。其中,甲、乙、丙为普通合伙人,丁为有限合伙人。甲负责执行合伙企业事务。2019年3月,丁又与戊共同设立从事与本合伙企业相竞争的业务的另一合伙企业,其他合伙人认为丁违反了竞业禁止义务,要求丁退出A
表明拿破仑战争已完全转变为霸权主义的和约是()。
Theswingingsinglelifestyleofthestereotypeismostpossibleforurban,educatedprofessionalandtechnicalpeople.Onlythe
A、Shehasastomachache.B、Shehasaheadache.C、Shehasacough.D、Shefeelscoldallthetime.B细节题。从Igetalotofheadaches,
最新回复
(
0
)