首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示. 求a的值;
[2011年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示. 求a的值;
admin
2019-04-28
77
问题
[2011年] 设向量组α
1
=[1,0,1]
T
,α
2
=[0,1,1]
T
,α
3
=[1,3,5]
T
不能由向量组β
1
=[1,1,1]
T
,β
2
=[1,2,3]
T
,β
3
=[3,4,a]
T
线性表示.
求a的值;
选项
答案
解一 因α
1
,α
2
,α
3
不能用β
1
,β
2
,β
3
线性表示,故秩([α
1
,α
2
,α
3
])>秩([β
1
,β
2
,β
3
]),而|α
1
,α
2
,α
3
|=[*]=1≠0,故秩([α
1
,α
2
,α
3
])=3,秩([β
1
,β
2
,β
3
])<3,所以 [*] 解二 4个三维向量β
1
,β
2
,β
3
,α
i
(i=1,2,3)必线性相关.若β
1
,β
2
,β
3
线性无关,则α
i
必可表示成β
1
,β
2
,β
3
的线性组合.这与题设矛盾,故β
1
,β
2
,β
3
线性相关.于是|β
1
,β
2
,β
3
|=a-5=0,即a=5. 解三 将下列向量组用初等行变换化为行阶梯形矩阵: [*] 易知秩([α
1
,α
2
,α
3
])=3.因α
1
,α
2
,α
3
不能由β
1
,β
2
,β
3
线性表出,故秩([β
1
,β
2
,β
3
])<3.因而 [*] 所以a=5.
解析
转载请注明原文地址:https://kaotiyun.com/show/QzJ4777K
0
考研数学三
相关试题推荐
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
设A为三阶矩阵,且|A|=4,则=______.
将f(x)=arctanx展开成x的幂级数.
求级数的收敛域与和函数.
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
判断级数的敛散性.
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设A=有三个线性无关的特征向量,求a及An.
设A=方程组AX=B有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
随机试题
根据我国《著作权法》的规定,表演者享有的权利包括()
A、对乙酰氨基酚B、布洛芬C、保泰松D、乙酰水杨酸E、吲哚美辛前额痛、眩晕等中枢神经系统不良反应常见于
急性阑尾炎患者出现寒战、黄疸时,应考虑
液化性坏死常见于
中亚地区伊斯兰教纪念性能建筑的代表性建筑形制是什么?
某机电安装公司承接一项炼油厂的塔群安装工程,工程内容包括:各类塔体就位、各类管道、自动控制和绝热工程等。其中最高塔体为42m,最重塔体102t。合同工期为3个月,合同约定:如果合同工期违约一天罚款10000元,如果每提前一天奖励5000元。安装公司项目部
在超市购物后,张林把七件商品放在超市的传送带上,肉松后面紧跟着蛋糕,酸奶后面接着放的是饼干,可口可乐汽水紧跟在水果汁后面,方便面后面紧跟着酸奶,肉松和饼干之间有两件商品,方便面和水果汁之间有两件商品,最后放上去的是一只蛋糕。如果上述陈述为真,那么,以下哪
个体的人生活动不仅具有满足自我需要的价值属性,还必然包含着满足社会需要的价值属性。个人的需要能不能从社会中得到满足,在多大程度上得到满足,取决于他的
下列关于函数依赖的叙述中,哪一条是不正确的?
以下叙述中正确的是()。
最新回复
(
0
)