首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T,求方程组的通解。
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T,求方程组的通解。
admin
2017-01-16
69
问题
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η
1
,η
2
,η
3
,且η
1
+2η
2
=(2,0,5,-1)
T
,η
1
+2η
3
=(4,3,-1,5)
T
,η
3
+2η
1
=(1,0,-1,2)
T
,求方程组的通解。
选项
答案
由η
1
+2η
2
=(2,0,5,-1)
T
,η
1
+2η
3
=(4,3,-1,5)
T
,η
3
+2η
1
=(1,0,-1,2)
T
可得 η
1
=(-2/3,-1/2,-1/3,-1/3)
T
,η
2
=(4/3,1/2,8/3,-1/3)
T
,η
3
=(7/3,2,-1/3,8/3)
T
, 原方程所对的齐次线性方程组的解为 η
3
-η
1
=(3,3,0,3)
T
,η
2
-η
1
=(2,3/2,3,0)
T
, 显然以上两个向量是线性无关的,而四元非齐次线性方程组系数矩阵的秩为2,故基础解系只含有两个向量,所以方程组的通解为 x=c
1
(3,3,0,3)
T
+c
2
(2,3/2,3,0)
T
+(-2/3,-1,-1/3,-1/3)
T
, 其中c
1
,c
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/R3u4777K
0
考研数学一
相关试题推荐
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
求y=3-x的n阶导数.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
A是n阶矩阵,且A3=0,则().
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
题设所给变上限定积分中含有参数x,因此令u=2x-t,则du=-dt,[*]
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
计算,Ω是球面x2+y2+z2=4与抛物面x2+y2=3z所围形成.
(2009年试题,二)设Ω={(x,y,z)|x2+y2+z2≤1},则=__________.
(2005年试题,20)已知二次型f(x1,x2,x3)=(1—a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把,(x1,x2,x3)化成标准形;
随机试题
A、肺B、肾C、心脏D、脑E、肝受二氧化碳分压及酸碱度值来调节血流的脏器是______。
患儿男,14岁,近段时间频发行为、意识突然停止,影响到生活和学习,诊断为癫痫小发作。如果此首选药物效果不佳,宜改用
下列哪个不是膜剂的制备方法
急性根尖周炎按其发展进程可分为
缺铁性贫血最常见的病因是
若希望实现三相异步电动机的向上向下平滑调速,则应采用()。[2010年真题]
下列保险代理人、保险经纪人在办理保险业务活动中的行为合法的是( )。
房地产开发项目管理分为:①施工招标阶段;②施工建设阶段;③工程建设准备阶段;④竣工验收阶段。正确的排序应为()。
Tosavetimeduringherpresentation,Ms.MaddendecidedtogiveabriefoverviewofeachofTranspacificTranslation’soffering
A、Theseforecastsareperfect.B、Lastyear,ColoradoStatepredicted19namedstorms.C、Onelandfallcannotcauseseriousconseq
最新回复
(
0
)