首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u,v)具有二阶连续偏导数,且满足f"uu(u,v)=f"vv(u,c),若已知f(x,4x)=x,f’u(x,4x)=4x2,求f"uu(x,4x),f"uv(x,4x)与f"vv(x,4x).
设函数f(u,v)具有二阶连续偏导数,且满足f"uu(u,v)=f"vv(u,c),若已知f(x,4x)=x,f’u(x,4x)=4x2,求f"uu(x,4x),f"uv(x,4x)与f"vv(x,4x).
admin
2019-02-20
64
问题
设函数f(u,v)具有二阶连续偏导数,且满足f"
uu
(u,v)=f"
vv
(u,c),若已知f(x,4x)=x,f’
u
(x,4x)=4x
2
,求f"
uu
(x,4x),f"
uv
(x,4x)与f"
vv
(x,4x).
选项
答案
按复合函数求偏导数的法则将恒等式f(x,4x)=x两端对x求导数得 f’
u
(x,4x)+4f’
v
(v,4v)=1, 把f’
u
(x,4x)=4x
2
代入上式可得 f’
v
(x,4x)=[*]-x
2
(*) 再分别将恒等式f’
u
(x,4x)=4x
2
与(*)式两端对x求导数f"
uu
(x,y)=f"
vv
(x,y)就有 [*] 解之即得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/RHP4777K
0
考研数学三
相关试题推荐
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则()
设A=,方程组Ax=0有非零解。α是一个三维非零列向量,若Ax=0的任一解向量都可由α线性表出,则a=()
设有齐次线性方程组Ax=0和Bx=0,其中A,n均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
微分方程满足条件y(2)=0的特解是().
设函数f(x)=|x3一1|φ(x),其中φ(x)在x=1处连续,则φ(1)=0是f(x)在x=1处可导的()
设f(x)有任意阶导数且f’(x)=f3(x),则f(n)(x)=______.
设φ(x)=,又f(x)在点x=0处可导,求F(x)=f[φ(x)]的导数.
求下列各函数的偏导数与全微分:
随机试题
【案例】男性,53岁。急性心肌梗死入院治疗1天。发作心慌,呼吸困难,心电图示室性心律,心率165次/分,血压76/40mmHg。急性前壁心肌梗死早期常见何种心律失常
患者,男,38岁。左季肋部摔伤6小时,血压65/42mmHg,脉搏123次/分,左侧腹部压痛明显,腹肌紧张不明显,疑为外伤性脾破裂。明确诊断后,应立即采取的措施是
某女,35岁,闭经一年有余,体检无其他疾病,来院就诊。医师辨证为冲任亏虚,天癸早衰。根据藏象理论,与天癸密切相关的是
随着全球化的发展,世界各国及地区的银行监管渐渐地实行统一的模式。()
根据《中共中央关于全面深化改革若干重大问题的决定》,下列类别的社会组织中,可直接向民政部门依法申请登记,无需业务主管单位审查同意的有()类社会组织。
含有重要的国家秘密,泄露会使国家的安全和利益遭受严重危害和重大损失的文件是绝密文件。()
“昭君出塞”和亲的故事发生在()时期。
简述实用主义教育学的主要观点,并谈一下你对它的认识。
实体-联系模型可以形象地用E-R图表示。在E-R图中以何种图形表示实体类型?
某完全二叉树共有256个结点,则该完全二叉树的深度为()。
最新回复
(
0
)