设f(x),fˊ(x)为已知的连续函数,则方程yˊ+fˊ(x)y=f(x)fˊ(x)的通解是 ( )

admin2017-10-12  25

问题 设f(x),fˊ(x)为已知的连续函数,则方程yˊ+fˊ(x)y=f(x)fˊ(x)的通解是  (    )

选项 A、y=f(x)+Ce-f(x)
B、y=f(x)+1+Ce-f(x)
C、y=f(x)-C+Ce-f(x)
D、y=f(x)-1+Ce-f(x)

答案D

解析 由一阶线性方程的通解公式得
转载请注明原文地址:https://kaotiyun.com/show/a0H4777K
0

最新回复(0)