首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
admin
2017-01-21
51
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
s
=t
1
α
s
+t
2
α
1
,其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解。 从α
1
,α
2
,…,α
s
是Ax=0的基础解系知s=n—r(A)。 以下分析β
1
,β
2
,…,β
s
线性无关的条件: 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
1
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s—1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*]=t
1
s
+(一1)
s+1
t
2
s
, 当t
1
s
+(—1)
s+1
t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠± t
2
,或当s为奇数且t
1
≠—t
2
时,β
1
,β
2
,…,β
s
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/RLH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
[*]
求椭球面x2+2y2+z2=1上平行于平面x-y+2z=0的切平面方程.
设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为____________.
设可微函数f(x,y)在点(xo,yo)取得极小值,则下列结论正确的是
二次型f(x1,x2,x3)=x12+x22+x12-4x2x3的正惯性指数为().
已知齐次线性方程组i:x1+2x2+3x3=0;2x1+3x2+5x3=0;x1+2x2+ax3=0;和ii:x1+bx2+cx3=0;2x1+b2x2+(c+1)x3=0;同解,求a,b,c的值.证明α1,α2,α3线性无关;
设∑是空间区域Ω的光滑边界曲面,n为∑上动点(x,y,z)处的外法向单位向量,(x,yo,zo)是∑上一定点,r={x=xo,y-yo,z-zo},r=|r|
计算曲面积分,∑为:
设f(x,y)连续,,其中D1=[-a,a]×[-b,b],D2=[0,a]×[0,b],a,b是两正常数,试用二重积分的几何意义说明:若f(x,y)=f(-x,y)=f(x,-y)=f(-x,-y),则I1=4I2.
随机试题
在市场经济条件下,利率水平的高低主要取决于()。
悬臂梁受载情况如图所示,在截面C上:
控制图的异常现象是指点子排列出现了( )等情况。
以下关于产业组织创新的说法不正确的是( )。
下列有关持续经营假设的说法中,不正确的有()。
阅读材料完成下列问题。《傅雷家书两则》原文1954年10月2日聪,亲爱的孩子。收到9月22日晚发的第六信,很高兴。我们并没为你前信感到什么烦恼或是不安。我在第八封信中还对你预告,这种精神消沉的情形,以后还是会有的。我是过来人,
最近一期的《瞭望新闻周刊》有文章称“消费就是爱国”,有关专家撰文加以嘲笑:我从来没有想到________的生活方式,居然会成为一种道德瑕疵。填入划横线部分最恰当的一项是()。
下列人员,享有选举权的是()。
物理安全技术包括机房安全和________。
Hewouldhavefinishedhiscollegeeducation,buthe______toquitandfindajobtosupporthisfamily.
最新回复
(
0
)