首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(15年)设向量组α1,α2,α3为R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. (I)证明向量组β1,β2,β3为R3的一个基; (Ⅱ)当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,
(15年)设向量组α1,α2,α3为R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. (I)证明向量组β1,β2,β3为R3的一个基; (Ⅱ)当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,
admin
2017-04-20
49
问题
(15年)设向量组α
1
,α
2
,α
3
为R
3
的一个基,β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=α
1
+(k+1)α
3
.
(I)证明向量组β
1
,β
2
,β
3
为R
3
的一个基;
(Ⅱ)当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同,并求所有的ξ.
选项
答案
(I)将已知的线性表示式写成矩阵形式,得 (β
1
,β
2
,β
3
)=(2α
1
+2kα
3
,2α
2
,α
1
+(k+1)α
3
)=(α
1
,α
2
,α
3
)P其中矩阵[*]由于P的行列式|P|=4≠0,所以P可逆, 故向量组β
1
,β
2
,β
解析
转载请注明原文地址:https://kaotiyun.com/show/RMu4777K
0
考研数学一
相关试题推荐
A是n阶矩阵,且A3=0,则().
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于
当x>0时,曲线().
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,(I)求相继两次故障之间时间间隔T的概率分布;(Ⅱ)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q.
设随机变量X和Y的联合分布是正方形G={(x,y):1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X—Y|的概率密度p(u).
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
随机试题
在蜗杆传动中,当导程角γ>6°时,蜗杆传动便可以自锁。()
J公司是一家建于20世纪50年代的老企业,该企业的涂装车间为独立设置的联合厂房,由5个主跨和1个辅跨组成。主跨内主要进行除锈、打磨、上漆、干燥。辅跨内设有相互独立的办公室、休息室、更衣室和变配电室。涂装车间有员工125人,其中80人为来自D公司的
对于劳动防护用品,生产经营单位应当教育从业人员做到()。
在费用优化过程中,当网络计划出现了几条关键线路时,在考虑质量、安全影响的基础上,优先选择的压缩对象是各条关键线路上( )的工作组合。
根据《关于清理规范工程建设领域保证金的通知》(国办发[2016]49号),工程质量保证金的预留比例上限不得高于工程价款结算总额的()。
企业开出转账支票1790元购买办公用品,编制记账凭证时,误记金额为1970元,科目及方向无误并已记账,应采用的更正方法是()。
我国商业银行信用风险监管指标包括()。
根据支付结算法律制度的规定,中国人民银行现代化支付系统包括()三个业务应用系统。
根据下列资料,回答下列问题。1999年9月,国务院发布《全国年节及纪念日放假办法》,决定增加公众法定休假日,“十一”黄金周就此诞生。据统计当年7天内全国出游人数达2800万人次,旅游综合收入141亿元。2016年“十一”黄金周,全国共接待游客5.93亿
Anewstudysuggeststhatcontrarytomostsurveys,peopleareactuallymorestressedathomethanatwork.Researchersmeasured
最新回复
(
0
)