首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):b1,…,br,能由向量组(Ⅱ):α1,…,αs线性表示为(b1,…,br)=(α1,…,αs)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(Ⅰ):b1,…,br,能由向量组(Ⅱ):α1,…,αs线性表示为(b1,…,br)=(α1,…,αs)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2017-12-29
32
问题
设向量组(Ⅰ):b
1
,…,b
r
,能由向量组(Ⅱ):α
1
,…,α
s
线性表示为(b
1
,…,b
r
)=(α
1
,…,α
s
)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性:令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组(Ⅰ):b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r。 又因为K为r×s阶矩阵,则有r(K)≤min{r,s}。 且由向量组(Ⅰ):b
1
,b
2
,…,b
r
能由向量组(Ⅱ):α
1
,α
2
,…,α
s
线性表示,则有r≤s,即min{r,s}=r。 综上所述 r≤r(K)≤r,即r(K)=r。 充分性:已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 [*] 于是有PB=PAK=[*] 由矩阵秩的性质 r(B)=r(PB)=[*]=r(K), 即r(B)=r(K)=r,因此向量组(Ⅰ)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/RUX4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明:存在x2∈[0,1]使得|f(x2)|=4.
函数y=lnx在区间[1,e]上的平均值为________.
设f(x)连续,f(0)=1,f’(0)=2,下列曲线与曲线y=f(x)必有公共切线的是()
设A是n阶矩阵.证明:A=O的充要条件是AAT=O.
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为:p1=1一θ,p2=θ一θ2,p3=θ2一θ3,p4=θ3,记Nj为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n。确定a1,a2,a3,a4使
设试问当α取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
用切比雪夫不等式确定,掷一均质硬币时,需掷多少次,才能保证‘正面’出现的频率在0.4至0.6之间的概率不小于0.9.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
下列函数中在点x=0处可微的是().
随机试题
环保监测中的COD表示()。
试述近代中国半殖民地半封建社会的主要矛盾和特点。
关于胎盘的代谢功能下列哪项错误
既要防止通货膨胀,即价格总水平的持续上涨,也要避免通货紧缩,即价格总水平的持续下降,是()。
下列各项属于社会服务类民间组织的是()。
效率:公平:市场经济
阐述柯尔伯格的德育思想。
软件需求规格说明书的作用不包括()。
Lookingatwhathehasdoneforthosedisabledchildren,one______forgivehissin.
ThefavouritepresentJimgotonhisbirthdaywas______.Jimfoundhispresentin______.
最新回复
(
0
)