首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2018-06-27
87
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令g(x)=x+lnx-1 [*] 令f’(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/Rak4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=1的某邻域内连续,且有求f(1)及f’(1);
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
试证明:当x>0时θ(x)为单调增加函数且
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
设有以下函数①②③④则在点x=0处可导的共有
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
n维向量组(I):α1,α2……αs和向量组(Ⅱ):β1β2……βt等价的充分必要条件是
证明n阶矩阵相似.
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.0×
设齐次线性方程组,其中ab≠0,72≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
随机试题
内翻暴力引起的踝关节损伤可有
根据《中华人民共和国担保法》的规定,()等不能作为保证人。
下列关于控制性详细规划用地细分的表述,不准确的是()。
2015年3月31日甲公司应付某金融机构一笔贷款100万元到期,因发生财务困难,无法按期偿还。当日,甲公司与金融机构签订债务重组协议,约定减免甲公司债务的20%,其余部分延期两年支付,年利率为5%(相当于实际利率),利息按年支付。至债务重组日,金融机构已为
甲、乙、丙、丁共同投资设立了A有限合伙企业(以下简称A企业)。合伙协议约定:甲、乙为普通合伙人,分别出资10万元;丙、丁为有限合伙人,分别出资15万元;甲执行合伙企业事务,对外代表A企业。A企业发生下列事实:(1)2月,甲以A企业的名义与B公司签订了一
Beautyhasalwaysbeenregardedassomethingpraiseworthy.Almosteveryonethinksattractivepeoplearehappierandhealthier,
管理大师德鲁克提出了一个重要的概念——目标管理,其最大优点是使得每一位经理人能控制自己的成就。自我控制意味着更强地激励一种要做得最好而不是敷衍了事的愿望。它意味着更高的成就目标和更广阔的眼界。目标管理的主要贡献之一就是它使得我们能用自我控制的管理来代替别人
下列命题中不正确的是
Itissuggestedthatallgovernmentministersshould______informationtotheirfinancialinterests.
Aglobe-spanningU.N.digitallibraryseekingtodisplayandexplainthewealthofallhumancultureshasgoneintooperationon
最新回复
(
0
)