首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2018-06-27
80
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令g(x)=x+lnx-1 [*] 令f’(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/Rak4777K
0
考研数学二
相关试题推荐
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
设函数f(x)在x=1的某邻域内连续,且有若又设f’’(1)存存,求f’’(1).
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
已知累次积分其中a>0为常数,则,可写成
微分方程yy’’一(y’)2=0满足y(0)=1与y’(0)=1的特解是_________.
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,耶么矩阵(A*)*的最大特征值是__________.
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求证:由L的参数方程确定连续函数y=y(x),并求它的定义域;
计算定积分(常数(a>0).
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
设有8只球,其中自球和黑球各4只,从中任取4只放人甲盒,余下的4只放入乙盒,然后分别在两盒中任取1只球,颜色正好相同.试问放人甲盒的4只球中有几只白球的概率最大?
随机试题
法律关系客体大体上可以分为_______。
A.急性胎儿窘迫B.轻度新生儿窒息C.慢性胎儿窘迫D.重度新生儿窒息E.新生儿产伤胎儿在宫内有缺氧现象危及胎儿健康和生命,发生在妊娠末期,诊断为
下列各项中既可以成为评价实际成本的依据,也可以用来对存货和销货成本计价的是()。
在摄入性会谈中,当会谈目标中有一个以上内容时,心理咨询师应该()。
下列关于核电站的说法,正确的是()。
下列关于法律的溯及力问题的表述中,不正确的是:
在唐代,中央和地方发生重大案件时,由大理寺、刑部和御史台的长官会同审判,这一形式被称作()
ThefamouswriterwasborninHerbamsted,whichwas______towntobeonthemap.
Ifthevoltageremainsconstant,themoretheresistance,thelessthecurrent.
YearafteryearadedicatedSwedishchemistworkedtofindasubstancewhich,when【C1】______nitroglycerine(硝化甘油),wouldmakeex
最新回复
(
0
)