首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P一1AP为对角形矩阵.
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P一1AP为对角形矩阵.
admin
2017-07-10
89
问题
设矩阵
已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P
一1
AP为对角形矩阵.
选项
答案
因为A有3个线性无关的特征向量,λ=2是A的二重特征值,所以A的属于λ=2的线性无关的特征向量必有两个,故r(2E一A)=1.经过初等行变换,得[*] 解得x=2,y=一2.设A的特征值为λ
1
,λ
2
,λ
3
,且λ
1
=λ
2
=2,则 trA=λ
1
+λ
2
+λ
3
=2+2+λ
3
=1+4+5=10,得λ
3
=6.对于特征值λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,有[*] 对应的两个线性无关的特征向量为ξ
1
=(1,一1,0)
T
,ξ
2
=(1,0,1)
T
. 对于特征值λ
3
=6,解齐次线性方程组(6E—A)x=0,有[*] 对应的特征向量为ξ
3
=(1,一2,3)
T
. 令可逆矩阵[*]
解析
本题主要考查矩阵相似于对角矩阵的充分必要条件以及把一个矩阵化为对角矩阵的方法.因为A有3个线性无关的特征向量,λ=2是A的二重特征值,所以,A对应于λ=2的线性无关的特征向量有两个,故r(2E-A)=1.对矩阵2E-A作适当的初等行变换,通过r(2E-A)=1确定出x和y的值,从而确定出A.再按现成的方法求可逆矩阵P使P
一1
AP为对角形.
转载请注明原文地址:https://kaotiyun.com/show/Ret4777K
0
考研数学二
相关试题推荐
-2
[*]
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
求下列各函数的导数(其中a为常数):
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设D是位于曲线下方、x轴上方的无界区域.当a为何值时,y(a)最小?并求此最小值.
设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
随机试题
旅游中间商
A.硝普钠B.硝酸甘油C.酚妥拉明D.普萘洛尔抑制β受体,减慢心率,降低心排量的是
两组呈正态分布的数值变量资料.但均数相差悬殊,若比较离散趋势,最好选用的指标为
项目完工且贷款账户关闭后,世界银行将进行独立的()。
某公司正考虑建设一个新项目。根据市场调查和财务部门测算,项目周期为5年,项目现金流量已估算完毕,公司选择的贴现率为10%,具体数据见项目现金流量表及现值系数表。该项目的净现值为()万元。
学生中心课程理论的代表人物是()。(2015·山西)
中(1)班的轩轩小朋友在王老师组织活动时,一会玩从家里偷偷带来的机器人玩具,一会儿拉旁边女孩的头发,一会儿踢前面小朋友的屁股。王老师发现后,当众指责轩轩:“本来就笨,还不好好听。”还罚他不准参加接下来的户外体育游戏,于是轩轩哇哇大哭。巡视的刘园长听见了,赶
在农业部门中所存在的“肥田出瘪稻”现象体现的是经济学中的()。
阅读下面的材料,回答后面的问题。材料一:在某市一务不足400米长的步行街上,清洁工人清理出人们吐掉的口香糖约15公斤。某市公交公司无人售票公共汽车3年间收到的残币假钞竞高达50万元。一孕妇在参加某事业单位录用考试后上了专门接送考生的大客车,全车考生没有一
Somemoderncitiesareusuallyfamousforpeoplewholiveaverylongtime.
最新回复
(
0
)