首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求z=f(x,y)满足:dz=2xdx=4ydy且f(0,0)=5. 求f(x,y)在区域D={(x,y)|x2+4y2≤4}上的最小值和最大值.
求z=f(x,y)满足:dz=2xdx=4ydy且f(0,0)=5. 求f(x,y)在区域D={(x,y)|x2+4y2≤4}上的最小值和最大值.
admin
2021-11-09
34
问题
求z=f(x,y)满足:dz=2xdx=4ydy且f(0,0)=5.
求f(x,y)在区域D={(x,y)|x
2
+4y
2
≤4}上的最小值和最大值.
选项
答案
当x
2
+4y
2
<4时,由[*]当x
2
+4y
2
=4时,令[*]则f=4cos
2
t-2sin
2
t+5=6cos
2
t+3,当cost=0时,f
min
=3;当cost=±1时,f
max
=9,故最小值为m=3,最大值M=9.
解析
转载请注明原文地址:https://kaotiyun.com/show/Rry4777K
0
考研数学二
相关试题推荐
设f(χ,y,z)=eχyz2,其中z=z(χ,y)是由χ+y+z+χyz=0确定的隐函数,则f′χ(0,1,-1)=_______.
讨论反常积分的敛散性,若收敛计算其值.
设曲线y=,过原点作曲线的切线,求此曲线、切线及χ轴所围成的平面图形绕χ轴旋转一周所成的旋转体的表面积.
证明:连续函数取绝对值后函数仍保持连续性,并举例说明可导函数取绝对值不一定保持可导性.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设f(χ,y)=讨论函数f(χ,y)在点(0,0)处的连续性与可偏导性.
设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).
设,f具有连续的二阶导数,则=.
求极限.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A。
随机试题
企业应当建立完善的货币资金内部控制制度,下列各项中,最有可能防止员工挪用现金收入的内部控制措施是()
下列哪些病变叩诊出现鼓音?
单纯男性因素引起的不育症占
A、立即用5%碳酸氢钠溶液冲洗后,再用清水冲洗B、以大量清水或肥皂水冲洗,继以30%~50%乙醇擦洗,再以饱和硫酸钠溶液湿敷,24小时内忌用油膏C、以5%氯化钙溶液清洗D、用棉花蘸松节油清除后,再涂羊毛脂E、
下列关于水泥稳定土基层的压实与养护,说法正确的是()。
生产厂房在划分防火分区时,确定防火分区建筑面积的主要因素有()。
()是几种典型货物的装箱方法。
1.2009年7月22日,国务院常务会议讨论并原则通过了《文化产业振兴规划》,《规划》除指出了近两三年内中国文化产业发展的方向,还明确提出,要培育骨干文化企业、建设文化产业基地、规划文化企业上市。业界对此《规划》的出台高度关注,这不仅是因为近年来文化产业的
非法拘禁导致被拘禁者重伤的,构成()。
TheAdvantagesandDisadvantagesofBuyingLotteryTomatoRipeningTomatoesgiveoffminutequ
最新回复
(
0
)