设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响

admin2016-10-20  37

问题 设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响并设α=0.05).

选项

答案先确定X的分布参数λ,由于P{X=8}=2.5P{X=10},即 [*] 计算出Y服从参数为λα的泊松分布,即 [*] 一个月内无重大交通事故的概率p=P{Y=0}=e-0.3. 一年内最多有一个月发生重大交通事故就是一年内至少有11个月无重大交通事故,其概率为 P{Z=11}+P{Z=12}=[*](1-e-0.3)+e-3.6=0.142.

解析 此题首先应该计算一个月内该地段发生重大交通事故次数Y的概率分布,据此可求出概率p=P{Y=0}.如果用Z表示一年内无重大交通事故的月份数,显然各个月是否有重大交通事故互不影响,因此Z服从二项分布B(12,p).
转载请注明原文地址:https://kaotiyun.com/show/S0T4777K
0

相关试题推荐
最新回复(0)