设f(x)连续且f(x)≠0,又设f(x)满足f(x)=∫0xf(x—t)dt+∫01f2(t)dt,则f(x)= _________.

admin2016-05-03  24

问题 设f(x)连续且f(x)≠0,又设f(x)满足f(x)=∫0xf(x—t)dt+∫01f2(t)dt,则f(x)= _________.

选项

答案[*]

解析 f(x)=∫0xf(x一t)dt+∫01f2(t)dt
    =一∫x0f(u)du+∫0xf(t)dt=∫0xd(u)du+∫01f(t)dt.
令∫01f2(t)dt=a,于是
    f(x)=∫0xf(u)du+a,f’(x)=f(x),f(0)=a,
解得f(x)=cex.由f(0)=a,得f(x)=aex,代入∫01f2(t)dt=a中,得
转载请注明原文地址:https://kaotiyun.com/show/S1T4777K
0

相关试题推荐
随机试题
最新回复(0)