首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
admin
2018-08-02
77
问题
设4元线性方程组(Ⅰ)为
又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(-1,2,2,1).
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)由系数矩阵的初等行变换:A=[*](x
3
,x
4
任意),令x
3
=1,x
4
=0,得ξ
1
=(0,0,1,0)
T
;令x
3
=0,x
4
=1,得ξ
2
=(-1,1,0,1)
T
,则ξ
1
,ξ
2
就是(Ⅰ)的一个基础解系. (2)若x是(Ⅰ)和(Ⅱ)的公共解,则存在常数λ
1
,λ
2
,λ
3
,λ
4
,使 [*] 由此得λ
1
,λ
2
,λ
3
,λ
4
满足齐次线性方程组 [*] 解此齐次线性方程组,得其参数形式的通解为 λ
1
=C,λ
2
=C,λ
3
=-C,λ
4
=C,其中C为任意常数. 故(Ⅰ)和(Ⅱ)有非零公共解,全部非零公共解为 C(0,0,1.0)
T
+C(-1,1,0,1)
T
=C(-1,1,1,1)
T
,其中C为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/S2j4777K
0
考研数学二
相关试题推荐
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
已知函数f(x)=求f(x)零点的个数.
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
设函数f(x)=(α>0,β>0).若(x)在x=0处连续,则
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
证明:对任意的x,y∈R且x≠y,有
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=_______
随机试题
相对定期预算而言,滚动预算的优点有()。
大华公司2004—2008年度的财务比率数据如下:要求:对大华公司的营运能力进行趋势分析,并思考其变化的原因。(指标计算中均使用当年数据)
人在寒冷环境中,产热主要通过()
症见泄泻清稀,甚则如水样,脘闷食少,腹痛肠鸣,恶寒,发热,头痛,肢体酸痛,舌苔白,脉濡缓,应选用
A.阿司匹林B.对乙酰氨基酚C.布洛芬D.氯丙嗪E.以上都不是可治疗缺血性心脏病的药物是
商品化会计核算软件可以向用户销售的基本要求是必须达到《会计核算软件基本功能规范》的要求。 ( )
小规模纳税人是()的增值税纳税人。
加涅按学习结果对学习做了分类,包括()。
下列行业最接近于完全竞争模式的一项是()。
Brian,asecurityadministrator,isrespondingtoavirusinfection.Theantivirusapplicationreportsthatafilehasbeeninfe
最新回复
(
0
)