首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
admin
2018-08-02
76
问题
设4元线性方程组(Ⅰ)为
又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(-1,2,2,1).
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)由系数矩阵的初等行变换:A=[*](x
3
,x
4
任意),令x
3
=1,x
4
=0,得ξ
1
=(0,0,1,0)
T
;令x
3
=0,x
4
=1,得ξ
2
=(-1,1,0,1)
T
,则ξ
1
,ξ
2
就是(Ⅰ)的一个基础解系. (2)若x是(Ⅰ)和(Ⅱ)的公共解,则存在常数λ
1
,λ
2
,λ
3
,λ
4
,使 [*] 由此得λ
1
,λ
2
,λ
3
,λ
4
满足齐次线性方程组 [*] 解此齐次线性方程组,得其参数形式的通解为 λ
1
=C,λ
2
=C,λ
3
=-C,λ
4
=C,其中C为任意常数. 故(Ⅰ)和(Ⅱ)有非零公共解,全部非零公共解为 C(0,0,1.0)
T
+C(-1,1,0,1)
T
=C(-1,1,1,1)
T
,其中C为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/S2j4777K
0
考研数学二
相关试题推荐
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
求微分方程的通解.
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=_______
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e-4+x2+3x+2,则Q(x)=_______,该微分方程的通解为_______.
随机试题
Senserelationsinclude______.()
肺脓肿属于
男,10岁,头面部,四肢及会阴部火焰烧伤4小时,烧伤总面积50%BSA,深卫度20%,Ⅲ度30%,烦躁不安,手足湿冷,心率160次/分,呼吸25次/分,伤后无尿实验室检查最可能的发现是
下列哪些证据属于辩护人收集后应当及时告知公安机关、人民检察院的证据?()
下列不属于安全验收评价从主要方面进行评价的内容的是()。
“备案号”栏:()。“运抵国”栏:()。
持仓费是指为拥有或保留某种商品而支付的( )等费用总和。
WeChathasseenmonthlyactiveusersgrowto468millionworldwidesinceits2011introduction,ChinesestudentswhoadoptedWe
在区间[0,a]上|f"(x)|≤M,且f(x)在(0,a)内取得极大值.证明:|f’(0)|+|f’(a)|≤Ma.
下面各序列中,只有(60)不是小顶堆。
最新回复
(
0
)