首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: 存在η∈(a,b),使得ηf’(η)+f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: 存在η∈(a,b),使得ηf’(η)+f(η)=0.
admin
2015-06-30
49
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:
存在η∈(a,b),使得ηf’(η)+f(η)=0.
选项
答案
令φ(x)=xf(x),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在η∈(a,b),使得φ’(η)=0, 而φ’(x)=xf’(x)+f(x),故nf’(η)+f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/my34777K
0
考研数学二
相关试题推荐
设函数z=f(x,y)(xy≠0)满足f(xy,)=y2(x2一1),则dz=_________。
A、 B、 C、 D、 B
[*]
设函数f(x)在x=0处连续,且则下列结论正确的是().
设y=y(x)由方程x2+y=tan(x—y)所确定且满足y(0)=0,则y"(0)=___________.
证明下列命题:(I)设f’(x0)=0,f"(x0)>0,则存在δ>0使得y=f(x)在(x0一δ,x0]单调减少,在[x0,x0+δ)单调增加;(Ⅱ)设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=f(1)=0,f"(x)<0(x∈(0,
设F(u,v)一阶连续可偏导,且由确定z为x,y的隐函数,则=.
已知某商品的需求量Q对价格的弹性为pln3,假设该商品的最大需求量为1200,则需求量Q关于价格P的函数关系是().
k为何值时,线性方程组,有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。若3维非零列向量α与ξ3正交,证明α是对应于λ1=λ2=1的特征向量。
随机试题
WhenIwaswalkingdownthestreettheotherday,Ihappenedto【C1】______asmallbrownleatherpurselyingonthesidewalk.I【C2
患者女性,30岁,撞击后致单纯左肩关节前方脱位,1小时后来医院就诊,X线片未见合并骨折征象。此时应首先采取哪种治疗措施
A.联苯胺B.氯甲醚C.石棉D.砷E.焦炉逸散物我国职业病名单中,列入职业肿瘤,可引起间皮瘤的毒物是
在预防唇腭裂发生的措施中,哪项是错误的
肛门周围脓肿的主要症状是
区域火灾风险评估的评估内容有哪些?
2014年10月20日,甲向乙购买一批原材料,价款为30万元。因乙欠丙30万元,故甲与乙约定由乙签发一张甲为付款人、丙为收款人的商业汇票。乙于当日依约签发汇票并交付给丙,该汇票上未记载付款日期。2014年11月15日,丙向甲提示付款时,甲以乙交货不符合合
随着儿童逐渐长大,他们往往在不考虑行为的外部结果的情况下,采纳身边他人优先考虑的事情和价值标准作为自己的接受他人所推崇的行为,这种现象称为动机的外化。()
近来,微博上流行一句“是中国人就转”的口号,这是用一面澎湃激昂的民族情怀大旗,迎风一展,遮住大众的眼睛,眼花缭乱间,既剥夺民众独立思考的能力,又________他人自由的意志。爱国主义是其廉价外衣,使人跟风盲从是其内在属性,看似强大逻辑的背后,实则是批判的
单纯涎石摘除术适用于()。
最新回复
(
0
)