首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是( )
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是( )
admin
2021-01-19
60
问题
设函数f(x)在(-∞,+∞)内单调有界,{x
n
}为数列,下列命题正确的是( )
选项
A、若{x
n
}收敛,则{f(x
n
)}收敛。
B、若{x
n
}单调,则{f(x
n
)}收敛。
C、若{f(x
n
)}收敛,则{x
n
}收敛。
D、若{f(x
n
)}单调,则{x
n
}收敛。
答案
B
解析
由f(x)有界可得{f(x
n
)}也有界,由f(x)单调且{x
n
}也单调可得{f(x
n
)}单调,此时{f(x
n
)}单调有界,故选B。
也可以举特例判断:
如果令x
n
=n,则{f(x
n
)}=0单调,由单调有界收敛定理可知,{f(x
n
)}是收敛的,但此时{x
n
}是发散的,排除C和D。
本题容易引起混淆的是选项A,{x
n
}收敛时,假设
x
n
=a,此时要得到
f(x
n
)也存在,必须有f(x)在x=a处连续的条件。但题目中的条件并不能保证f(x)在x=a处连续,所以A不正确。例如:
转载请注明原文地址:https://kaotiyun.com/show/S884777K
0
考研数学二
相关试题推荐
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T求方程组的通解。
微分方程(3y一2x)dy=ydx的通解是__________.
由方程sin(xy)-ln=1所确定的曲线y=y(χ)在χ=0处的切线方程为_______.
已知a1=(-1,1,a,4)T,a2=(-2,1,5,a)T,a3=(a,2,10.1)T是四阶方阵A的属于三个不同特征值的特征向量,则a的取值为().
已知3阶矩阵曰为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设A=(α1,α2,α3)是三阶矩阵,且|A|=4。若B=(α1一3α2+2α3,α2—2α3,2α2+α3),则|B|=________。
设4阶方阵有特征值2和1,则a=________,b=________。
设x1>0,xn+1=1—e-xn,n=1,2,….(1)证明数列{xn}收敛,并求其极限;(2)求极限
设x1=10,xn+1=(n=1,2,…),试证数列{xn}极限存在,并求此极限.
(2003年试题,九)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图1—6—1),容器的底面圆的半径为2m,根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以,mn2/min的速率均匀扩大(假设注入
随机试题
上海辖()个区。
f(x)=2x在x=1处的幂级数展开式___________.
下列哪项不是麻疹逆证的见症( )。
A、肾上腺素B、去甲肾上腺素C、麻黄碱D、多巴胺E、异丙肾上腺素青霉素引起的过敏性休克应首选
先见全身战栗,几经挣扎,而继之汗出的为由上焦邪热,或中焦湿热郁蒸所致的汗出为
下列不属于工程项目合同特点的是()。
2010年,研究人员在富含砷的沉淀物中发现了一种怪异的生物体,这种被命名为“GFAJ-1”的细菌可以在富砷少磷的实验环境中茁壮生存。研究人员称,这种细菌已经将砷元素取代磷元素的位置,改写了自己的DNA。由此有人认为生命法则已被推翻。然而,最近的研究否定了
AreportconsistentlybroughtbackbyvisitorstotheU.S.ishowfriendly,courteous,andhelpfulmostAmericansweretothem.
商业票据必须经过()才能转让流通。
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)