首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(χ),q(χ),f(χ)均是χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的三个线性无关解,C1,C2为任意常数,则齐次方程y〞+p(χ)y′+q(χ)y=0的通解是( )
设p(χ),q(χ),f(χ)均是χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的三个线性无关解,C1,C2为任意常数,则齐次方程y〞+p(χ)y′+q(χ)y=0的通解是( )
admin
2019-06-29
76
问题
设p(χ),q(χ),f(χ)均是χ的连续函数,y
1
(χ),y
2
(χ),y
3
(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的三个线性无关解,C
1
,C
2
为任意常数,则齐次方程y〞+p(χ)y′+q(χ)y=0的通解是( )
选项
A、C
1
y
1
(χ)+(C
1
-C
2
)y
2
(χ)+(1-C
2
)y
3
(χ)
B、(C
1
-C
2
)y
1
(χ)+(C
2
-1)y
2
(χ)+(1-C
1
)y
3
(χ)
C、(C
1
+C
2
)y
1
(χ)+(C
1
-C
2
)y
2
(χ)+(1-C
1
)y
3
(χ)
D、C
1
y
1
(χ)+C
2
y
2
(χ)+(1-C
1
-C
2
)y
3
(χ)
答案
B
解析
将选项B改写为:(C
1
-C
2
)y
1
(χ)+(C
2
-1)y
2
(χ)+(1-C
1
)y
3
(χ)
=C
1
[y
1
(χ)-y
3
(χ)]+C
2
[y
2
(χ)-y
1
(χ)]+[y
3
(χ)-y
2
(χ)].
因为y
1
(χ),y
2
(χ),y
3
(χ)均是y〞+p(χ)y′+q(χ)y=f(χ)的解,
所以y
1
(χ)-y
3
(χ),y
2
(χ)-y
1
(χ),y
3
(χ)-y
2
(χ)均是y〞+p(χ)y′+q(χ)y=0的解,并且y
1
(χ)-y
2
(χ)与y
2
(χ)-y
1
(χ)线性无关.故B为通解.
(事实上,若y
1
(χ)-y
3
(χ)与y
2
(χ)-y
1
(χ)线性相关,则存在不全为零的k
1
,k
2
使得
k
1
[y
1
(χ)-y
3
(χ)]+k
2
[y
2
(χ)-y
1
(χ)]=0,
即(k
1
-k
2
)y
1
(χ)+k
2
y
2
(χ)-k
1
y
3
(χ)=0.
由于y
1
(χ),y
2
(χ),y
3
(χ)是线性无关的,故k
1
,k
2
全为零,矛盾.故y
1
(χ)-y
3
(χ)与y
2
(χ)-y
1
(χ)线性无关).
转载请注明原文地址:https://kaotiyun.com/show/CsN4777K
0
考研数学二
相关试题推荐
设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=_________。
设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=。若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=()
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设。对(Ⅰ)中的任意向量ξ2,ξ3,证明:ξ1,ξ2,ξ3线性无关。
设。求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
如图,曲线C的方程为y=f(x),点(3,2)是它的一个极点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx。
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x=()
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,C,d为常数)()
随机试题
北京地势(),平均海拔43.5米。
下列关于酶的磷酸化叙述错误的是
尿培养常见的革兰阴性杆菌是
牙周病活动期牙槽骨吸收表现为
患者,女,20岁。喉结两侧弥漫性肿大,边界不清,皮色如常,无疼痛,诊为气瘿。治疗应首选
A.喘憋,呼气性呼吸困难明显B.症状与肺部体征不符,一般无呼吸困难C.中毒症状重,易并发脓气胸D.稽留高热,肺部体征出现较晚E.易迁延并导致支气管扩张呼吸道合胞病毒
建设工程的保证人一般是()。
下列选项中,不属于商业银行市场风险限额管理的是()
吉林省的主要少数民族为朝鲜族、满族和回族,分别有着各自不同的民俗风情。()
胎质洁白的釉下彩瓷器以福建德化所产最为有名。()
最新回复
(
0
)