首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=∫0sinxsin 2tdt,g(x)=∫02xln(1+t)dt,则当x→0时,f(x)与g(x)相比是 ( )
设f(x)=∫0sinxsin 2tdt,g(x)=∫02xln(1+t)dt,则当x→0时,f(x)与g(x)相比是 ( )
admin
2019-08-12
55
问题
设f(x)=∫
0
sinx
sin 2tdt,g(x)=∫
0
2x
ln(1+t)dt,则当x→0时,f(x)与g(x)相比是 ( )
选项
A、等价无穷小
B、同阶但非等价无穷小
C、高阶无穷小
D、低阶无穷小
答案
B
解析
需要计算f(x)与g(x)比值的极限.
故当x→0时,f(x)与g(x)是同阶但非等价无穷小.
转载请注明原文地址:https://kaotiyun.com/show/R5N4777K
0
考研数学二
相关试题推荐
设区域,其中常数a>b>0.D1是D在第一象限的部分,f(x,y)在D上连续,等式恒成立的充分条件是()[img][/img]
(08年)设函数y=y(x)由参数方程确定,其中x(t)是初值问题的解,求
(14年)设函数f(u)具有2阶连续导数,z=f(excosy)满足若f(0)=0,f’(0)=0,求f(u)的表达式.
(94年)设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,∫0λf(x)dx≥λ∫01f(x)dx.
计算二重积分其中D是由直线y=2,y=x和双曲线xy=1所围成的平面域.
(2006年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则
设4阶方阵A=[α,γ2,γ3,γ4],B=[β,γ2,γ3,γ4],其中α,β,γ2,γ3,γ4都是4维列向量,且|A|=4,|B|=1,则|A+B|=_______.
已知二次型f(x1,x2,x3)=x12-2x22+bx32-4x1x2+4x1x3+2ax2x3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32.求a、b的值和正交矩阵P.
设微分方程xf”(x)-f’(x)=2x.(I)求上述微分方程的通解;(Ⅱ)求得的解在x=0处是否连续?若不是,能否对每一个解补充定义,使其在x=0处连续,并讨论补充定义后的f(x)在x=0处的f’(0)及f”(0)的存在性,要求写出推理过程.
随机试题
阅读《说笑》的第一段:自从幽默文学提倡以来,卖笑变成了文人的职业。幽默当然用笑来发泄,但是笑未必就表示着幽默。刘继庄《广阳杂记》云:“驴鸣似哭,马嘶如笑。”而马并不以幽默名家,大约因为脸太长的缘故。老实说,一大部分人的笑,也只等于马鸣萧萧,充不得
She’supstairs______letters.
全身性皮肤瘙痒中,下列哪项是正确的
“一夫法”是指将食、中、无名、小指相并,四横指的间距为3寸,其量取标准应按
具酸碱两性的生物碱是
监理工程师在收到承包方送交的索赔报告和有关资料后,于( )天内给予答复。
清代功举办过几次的“千叟宴”,是清宫中的规模最大、与宴者最多的盛大御宴。()
关于凸极同步发电机短路,下列说法正确的有()。
在数据库中,产生数据不一致的根本原因是()。
法国古典主义的奠基之作是_______,所谓“熙德”即阿拉伯语_______之意。
最新回复
(
0
)