首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式; (3)β能用
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式; (3)β能用
admin
2019-05-11
47
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2,a+2b)
T
,β=(1,3,-3)
T
.试讨论当a,b为何值时,
(1)β不能用α
1
,α
2
,α
3
线性表示;
(2)β能用α
1
,α
2
,α
3
唯一地线性表示,求表示式;
(3)β能用α
1
,α
2
,α
3
线性表示,且表示式不唯一,求表示式的一般形式.
选项
答案
记A=(α
1
,α
2
,α
3
),则问题化归线性方程组AX=β解的情形的讨论及求解问题了. [*] (1)a=0(b任意)时 [*] 方程组AX=β无解,β不能用α
1
,α
2
,α
3
线性表示. (2)当a≠0,a≠b时,r(A|β)=r(A)=3,方程组AX=β唯一解,即β可用α
1
,α
2
,α
3
唯一表示. [*] AX=β的解为[*] (3)当a=b≠0时r(A|β)=r(A)=2,AX=β有无穷多解,即β可用α
1
,α
2
,α
3
线性表示,且表示式不唯一. [*] AX=β有特解[*],而(0,1,1)
T
构成AX=0的基础解系,AX=β的通解为 [*]+c(0,1,1)
T
,c任意, 即β=[*],c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/SAV4777K
0
考研数学二
相关试题推荐
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
求
=_______.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=.属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
将积f(χ,y)dχdy化成极坐标形式,其中D为χ2+y2=-8χ所围成的区域.
设f(χ)二阶连续可导且f(0)=f′(0)=0,f〞(χ)>0.曲线y=f(χ)上任一点(χ,f(χ))(χ≠0)处作切线,此切线在χ轴上的截距为u,求.
随机试题
蒸馏操作冷凝过程的目的是()。
以口腔、舌上满布白屑为主要临床特征的疾病为
家和公司根据与万兴公司达成的仲裁协议,向某仲裁委员会申请仲裁。在仲裁审理中,双方达成和解协议并申请依和解协议作出裁决。裁决作出后,万兴公司拒不履行其义务,家和公司向法院申请强制执行,而万兴公司则向法院申请裁定不予执行该仲裁裁决。法院的下列哪些做法是错误的?
房地产项目的盈亏平衡分析包括最低租售价格分析、最高土地获取成本分析、最高租售数量分析和最高工程费用分析等多种形式。()
控制系统结构如图4-90所示。其中K1,K2>0,β≥0。试分析:β值变化(增大),系统稳定性()。
有关物理磨损与设备价值的关系,说法正确的是()。
基金业协会可以相据当事人的()原则对私募基金业务纠纷进行调解,维护投资者合法权益。
瑞典皇家科学院2014年2月13日宣布,华人科学家()获得2014年度罗夫?肖克奖中的数学奖项,以奖励他在无穷多对孪生素数研究上取得的重大突破。
Manypeoplebelievetheglarefromsnowcausessnowblindness.Yet,darkglassesornot,theyfindthemselves【C1】______headaches
Anunidentifiedwitoncesaid,"Laugh,andtheworldlaughswithyou.Snore,andyousleepalone."Yetsnoringisfarfromalau
最新回复
(
0
)