首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式; (3)β能用
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式; (3)β能用
admin
2019-05-11
41
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2,a+2b)
T
,β=(1,3,-3)
T
.试讨论当a,b为何值时,
(1)β不能用α
1
,α
2
,α
3
线性表示;
(2)β能用α
1
,α
2
,α
3
唯一地线性表示,求表示式;
(3)β能用α
1
,α
2
,α
3
线性表示,且表示式不唯一,求表示式的一般形式.
选项
答案
记A=(α
1
,α
2
,α
3
),则问题化归线性方程组AX=β解的情形的讨论及求解问题了. [*] (1)a=0(b任意)时 [*] 方程组AX=β无解,β不能用α
1
,α
2
,α
3
线性表示. (2)当a≠0,a≠b时,r(A|β)=r(A)=3,方程组AX=β唯一解,即β可用α
1
,α
2
,α
3
唯一表示. [*] AX=β的解为[*] (3)当a=b≠0时r(A|β)=r(A)=2,AX=β有无穷多解,即β可用α
1
,α
2
,α
3
线性表示,且表示式不唯一. [*] AX=β有特解[*],而(0,1,1)
T
构成AX=0的基础解系,AX=β的通解为 [*]+c(0,1,1)
T
,c任意, 即β=[*],c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/SAV4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设f(χ)在(0,+∞)内连续且单调减少.证明:∫1n+1f(χ)dχ≤f(k)≤f(1)+∫1nf(χ)dχ.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=.属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
将积f(χ,y)dχdy化成极坐标形式,其中D为χ2+y2=-8χ所围成的区域.
(1)设=0,求a,b的值.(2)确定常数a,b,使得ln(1+2χ)+=χ+χ2+o(χ2).(3)设b>0,且=2,求b.
改变积分次序
已知函数f(x)在区间[0,2]上可积,且满足则函数f(x)的解析式是
随机试题
影响心理治疗疗效的因素不包括【】
接触联苯胺可引起
蒋某,原是某检察院检察员,1998年4月25日离任,何时他才能以律师身份担任原任职检察院办理案件的诉讼代理人?()
下列有关各种股权筹资形式的优缺点的表述中,正确的是()。
根据公司法律制度的规定,公司合并时,应当依法通知债权人并在报纸上公告。下列有关公司通知债权人及公告的表述中,符合规定的是()。
根据《刑法》的规定,单位负责人对依法履行职责、抵制违反《会计法》规定行为的会计入实行打击报复,情节恶劣,构成犯罪的,处以有期徒刑或者拘役。有期徒刑刑期最高为( )。
随着时间的流逝,归因会越来越具有()。
格式塔心理学家对于学习实质和过程的研究主要关注的是
数据库系统的核心是
Inthepast,theParkServicefocusedonmakingthebigscenicparksmore【C1】______andcomfortablefortourists.Roadswerepave
最新回复
(
0
)