首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求功: (Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功? (Ⅱ)半径为R的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
求功: (Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功? (Ⅱ)半径为R的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
admin
2018-11-11
50
问题
求功:
(Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功?
(Ⅱ)半径为R的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
选项
答案
(Ⅰ)以球心为原点,χ轴垂直向上,建立坐标系(如图3.5). [*] [*]取下半球中的微元薄片,即[*]取小区间[χ,χ+dχ][*][-1,0],相应的球体小薄片,其重量(即体积)为,π(1-χ
2
)dχ,在水中浮力与重力相符, 当球从水中移出时,此薄片移动距离为(1+χ),故需做功dω
1
=(1+χ)π(1-χ)
2
dχ.因此,对下半球做的功 ω
1
=∫
-1
0
π(1+χ)(1-χ
2
)dχ. [*]取上半球中的微元薄片,即V取小区间[χ,χ+dχ][*][0,1],相应的小薄片,其重量为,π(1-χ)
2
d戈,当球从水中移出时,此薄片移动距离为1.所受力为重力,故需做功dω
2
=π(1-χ
2
)dχ.因此,对上半球做的功 ω
2
=∫
0
1
π(1-χ
2
)dχ. 于是,对整个球做的功为 ω=ω
1
+ω
2
=∫
-1
0
π(1+χ)(1-χ
2
)dχ+∫
0
1
π(1-χ
2
)dχ =∫
-1
1
π(1-χ
2
)dχ+∫
-1
0
πχ(1-χ
2
)dχ [*] (Ⅱ)建立坐标系如图3.6.取χ为积分变量,χ∈[0,R]. [*][χ,χ+dχ]相应的水薄层,看成圆柱体,其体积为 π(R
2
-χ
2
)dχ, 又比重ρ=1,于是把这层水抽出需做功dω=πχ(R
2
-χ
2
)dχ.因此,所求的功 ω=∫
0
R
πχ(R
2
-χ
2
)dχ=π[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SRj4777K
0
考研数学二
相关试题推荐
设a>0,x1>0,且定义证明当n→∞时,数列{xn}的极限存在并求此极限值.
下列命题中正确的是()
设函数φ(x)=∫0sinxf(tx2)dt,其中f(x)是连续函数,且f(0)=2,求φ’(x).
设A,B,C是n阶方阵,满足r(C)+r(B)=n,(A+E)C=O,B(AT一2E)=O.证明:A~A,并求A及|A|.
设=(a1,a2,…,an)T,a1≠0,A=aaT,求A的非零特征值及n个线性无关的特征向量.
二阶常系数非齐次线性方程y’’一4y’+3y=2e2x的通解为y=______________.
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
已知求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由.
(1998年)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系,设仪器在重力的作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所
设f(x)连续,φ(x)=∫01f(xt)dt,且=A,(A为常数),求φ’(x),并讨论φ’(x)在x=0处的连续性.
随机试题
Protel99se在原理图元件创建中,绘制的元件符号一般要位于设计界面什么位置编辑?其中绘制图形符号用什么工具?绘制引脚用什么工具?
说明证书机构(CA)的组成及各部分的作用。
A、肺癌B、肺结核C、两者均有D、两者均无胸片发现右上肺2、0cm肿块有钙化_______。
同白细胞杀菌能力有关的疾病是
有一聋哑妇女引产一男性胎儿,其身长30cm,各脏器均已发育完全,该女性妊娠多少周()
在法庭审理过程中,被告人屠某、沈某和证人朱某提出在侦查期间遭到非法取证,要求确认其审前供述或证言不具备证据能力。下列哪些情形下应当根据法律规定排除上述证据?(2013年卷二68题)
投资价值研究报告应当由发行人的研究人员独立撰写并署名。()
我国中小学开设的语、数、外等课程属于()。
某城市有A、B、C、D四个区,B、C、D三区的面积之和是A的14倍,A、C、D三区的面积之和是B的9倍,A、B、D三区的面积之和是C区的2倍,则A、B、C三区的面积之和是D区的()。
EuthanasiahasbeenatopicofcontroversyinEuropesinceatleast1936.@Onanaverageofsixtimesaday,adoctorinHolland
最新回复
(
0
)