首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求功: (Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功? (Ⅱ)半径为R的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
求功: (Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功? (Ⅱ)半径为R的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
admin
2018-11-11
51
问题
求功:
(Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功?
(Ⅱ)半径为R的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
选项
答案
(Ⅰ)以球心为原点,χ轴垂直向上,建立坐标系(如图3.5). [*] [*]取下半球中的微元薄片,即[*]取小区间[χ,χ+dχ][*][-1,0],相应的球体小薄片,其重量(即体积)为,π(1-χ
2
)dχ,在水中浮力与重力相符, 当球从水中移出时,此薄片移动距离为(1+χ),故需做功dω
1
=(1+χ)π(1-χ)
2
dχ.因此,对下半球做的功 ω
1
=∫
-1
0
π(1+χ)(1-χ
2
)dχ. [*]取上半球中的微元薄片,即V取小区间[χ,χ+dχ][*][0,1],相应的小薄片,其重量为,π(1-χ)
2
d戈,当球从水中移出时,此薄片移动距离为1.所受力为重力,故需做功dω
2
=π(1-χ
2
)dχ.因此,对上半球做的功 ω
2
=∫
0
1
π(1-χ
2
)dχ. 于是,对整个球做的功为 ω=ω
1
+ω
2
=∫
-1
0
π(1+χ)(1-χ
2
)dχ+∫
0
1
π(1-χ
2
)dχ =∫
-1
1
π(1-χ
2
)dχ+∫
-1
0
πχ(1-χ
2
)dχ [*] (Ⅱ)建立坐标系如图3.6.取χ为积分变量,χ∈[0,R]. [*][χ,χ+dχ]相应的水薄层,看成圆柱体,其体积为 π(R
2
-χ
2
)dχ, 又比重ρ=1,于是把这层水抽出需做功dω=πχ(R
2
-χ
2
)dχ.因此,所求的功 ω=∫
0
R
πχ(R
2
-χ
2
)dχ=π[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SRj4777K
0
考研数学二
相关试题推荐
设F(x,y,z)=zarctany2i+z3ln(x2+1)j+zk,求F通过抛物面x2+y2+z=2位于平面z=1的上方的那一块流向上侧的流量.
设A是n阶实对称矩阵,将A的i列和j列对换得到B,再将B的i行和j行对换得到C,则A与C()
设已知方程组Ax=b有无穷多解,求a的值并求其通解.
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
设有向量组问α,β为何值时:向量b能由向量组A线性表示,且表示式不唯一,并求一般表达式.
已知方程组有解,证明:方程组无解.
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是().
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数.(Ⅰ)写出f(χ)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(χ)在χ=
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
随机试题
传播学的分支有
A.滤泡小,均匀,排列整齐,不融合,主要见于下穹隆部B.滤泡小,均匀,排列整齐,不融合,主要见于下穹隆部,有结膜充血及分泌物C.睑结膜面可见膜状物,剥离时结膜面出血D.滤泡形态不一,大小不等,有乳头肥大及角膜血管翳E.绒状小乳头,滤泡很少见慢性
井径比是指( )。
库存现金是由()经管的。
去污粉(专用来擦洗玻璃)
曾几何时,由于技术的限制,人类眼中的海洋只有临近的一片水域;而今,借助高新技术设备.人们的视野投向更深更广阔的海域,海洋的神秘面纱逐步被揭开。这表明()。①实践具有社会历史性②实践具有直接现实性③实践是认识发展的动力④实践是认识的目的和归宿
最近某市泥头车事故多发,你是该市宣传部的工作人员。怎么组织一次关于此事件的新闻发布会?
假设变量a的内容是"计算机软件工程师",变量b的内容是"数据库管理员",表达式的结果为"数据库工程师"的是
Afair
A、 B、 C、 C
最新回复
(
0
)