首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2. (Ⅰ)求(X1,X2)的联合分布; (Ⅱ)求P{X1=0,X2≠0},P{X1X2=0}; (Ⅲ)判断X
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2. (Ⅰ)求(X1,X2)的联合分布; (Ⅱ)求P{X1=0,X2≠0},P{X1X2=0}; (Ⅲ)判断X
admin
2015-05-07
102
问题
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用X
i
表示第i次取到的白球数,i=1,2.
(Ⅰ)求(X
1
,X
2
)的联合分布;
(Ⅱ)求P{X
1
=0,X
2
≠0},P{X
1
X
2
=0};
(Ⅲ)判断X
1
,X
2
是否相关,是正相关还是负相关.
选项
答案
(Ⅰ)X
1
的可能取值为0,1;X
2
的取值为0,1,2.由乘法公式可得 [*] 得联合分布与边缘分布如下表 [*] (Ⅱ)P{X
1
=0,X
2
≠0}=P{X
1
=0,X
2
=1}+P{X
1
=0,X
2
=2}=[*] P{X
1
X
2
=0}=1-P{X
1
X
2
≠0}=1-[P{X
1
=1,X
2
=1}+P{X
1
=1,X
2
=2}]=1-[*] 或 P{X
1
X
2
=0}=P{X
1
=0,X
2
=0}+P{X
1
=0,X
2
≠0}+P{X
1
≠0,X
2
=0}=[*] (Ⅲ)由边缘分布知EX
1
=5/8,EX
2
=[*],而EX
1
X
2
=[*] 故cov(X
1
,X
2
)=EX
1
X
2
-EX
1
EX
2
=[*] 由于协方差不为零且为负数,故知X
1
,X
2
负相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/SY54777K
0
考研数学一
相关试题推荐
已知ξ=[1,1,-1]T是矩阵的一个特征向量.确定参数a,b及ξ对应的特征值λ;
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T.又β=[1,2,3]T.计算;Anξ1;
设A是n阶矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量.证明:ξ,η正交.
证明:矩阵相似且合同.
设f(x)为连续的奇函数,平面区域D由y=—x3x=1与y=1围成,计算
设f(u)为连续函数,则二次积分在直角坐标系下化为二次积分_______.
已知函数f(x,y)在点(0,0)的某个邻域内连续,且33=一2,则().
求下列极限:
用观察的方法判断下列数列是否收敛:
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:(X1,X2)的分布;
随机试题
Lessthanayearago,anewgenerationofdietpillsseemedtoofferthelongsoughtanswertoourchronicweightproblems.Hund
黄某对劳动仲裁制度有如下理解,其中错误的是( )。如果建筑公司对仲裁裁决不服的,自收到裁决书之日起( )日内,可以向人民法院起诉。
下列关于疏散分析参数的说法,错误的有()。
下列各项符合房产税规定的是()。
某企业发出存货采用加权平均法结转成本,桉单项存货计提跌价准备,存货跌价准备在结转成本时结转。该企业2018年1月1日存货的账面余额中包含甲产品1200吨,其采购成本300万元,加工成本60万元,采购时增值税进项税额48万元,已计提的存货跌价准备30万元,
关于翻门的说法,正确的有()。
小雪有很长一段时间总是感到心烦意乱,坐立难安,不知道为什么有种很担忧的感觉,但是又说不清楚具体在担忧什么。小林的症状属于()。
耐甲氧西林金黄色葡萄球菌(MRSA)、克雷伯氏菌等细菌能引起多种疾病和感染。同时各种抗生素往往又对它们无可奈何,这些令人色变的细菌因而被称为超级细菌。近年来,研究人员通过微生物的全基因组测序技术不仅能追踪MRSA的源头,而且能追踪到其他耐药细菌的源头。因此
【黄天荡之战】
PC机执行输出指令,OUT时,向I/O端口芯片送出的有效控制信号是( )。
最新回复
(
0
)