首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设的一个特征值为λ1=2,其对应的特征向量为ξ1=. 判断A可否对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵,若不可对角化,请说明理由。
设的一个特征值为λ1=2,其对应的特征向量为ξ1=. 判断A可否对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵,若不可对角化,请说明理由。
admin
2021-11-25
77
问题
设
的一个特征值为λ
1
=2,其对应的特征向量为ξ
1
=
.
判断A可否对角化,若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵,若不可对角化,请说明理由。
选项
答案
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SZy4777K
0
考研数学二
相关试题推荐
设z=z(x,y)由方程=0所确定,其中F是任意可微函数,则=__________。
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续;②f(x)在[a,b]上可积;③f(x))在[a,b]上可导;④f(x)在[a,b]上存在原函数.以P=>Q表示由性质P可推出性质Q,则有()
证明:
设D为有界闭区域,z=f(χ,y)在D上二阶连续可偏导,且在区域D内满足:≠0,则().
设3阶矩阵A=(Ⅰ)t为何值时,矩阵A,B等价?说明理由;(Ⅱ)t为何值时,矩阵A,C相似?说明理由.
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
某五元齐次线性方程组的系数矩阵经初等变换化为,则自由变量可取为①x4,x5;②x3,x5;③x1,x5;④x2,x3。那么正确的共有()
设f(x)是以2为周期的连续函数,则()
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
细菌的增长率与总数成正比,如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数。
随机试题
虚劳的辨证要点是
某妇女,28岁,产后8天,腹痛,发热,体温39.5℃,检查下腹部压痛,子宫如妊娠4个月,触痛明显,子宫左侧触及拳头大,压痛性包块,本病应诊断为
除了慢性支气管炎以外,下列哪种疾病是慢性肺心病的常见病因
急性白血病患者的出血多数是因为
桥梁技术状况评定时,以下哪一项不是梁式桥的主要部件()。
平行于坝轴线方向的缝称为()。
为控制个人住房贷款操作风险,对借款申请人的调查内容包括()。
Theytriedtodrivetheirhorseintotheriver,buthesimplycouldnot______.
Weallknowthatthenormalhumandailycycleofactivityisofsome7-8hours’sleepalternatingwithsome16-17hour’swakefuln
EatingOurYoung[A]AtFeltonvilleSchoolofArtsandSciences,amiddleschoolinapoorneighborhoodofPhiladelphia,thescho
最新回复
(
0
)