首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2则a1,A(a1+a2)线性无关的充分必要条件是( ).
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2则a1,A(a1+a2)线性无关的充分必要条件是( ).
admin
2020-02-28
55
问题
设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为a
1
,a
2
则a
1
,A(a
1
+a
2
)线性无关的充分必要条件是( ).
选项
A、λ
1
=0
B、λ
2
=0
C、λ
1
≠0
D、λ
2
≠0
答案
D
解析
由题意可知A(a
1
+a
2
)=Aa
1
+Aa
2
=λ
1
a
1
+λ
2
a
2
,
于是a
1
,A(a
1
+a
2
)线性无关
k
1
a
1
+k
2
A(a
1
+a
2
)=0,k
1
,k
2
恒为0.
(k
1
+λ
1
k
2
)a
1
+λ
2
k
2
a
2
=0,k
1
,k
2
恒为0.
又因为不同特征值的特征向量线性无关,故a
1
,a
2
线性无关,
于是
k
1
,k
2
恒为0.
齐次方程组
只有零解
,λ
2
≠0,故选(D).
转载请注明原文地址:https://kaotiyun.com/show/JJA4777K
0
考研数学二
相关试题推荐
确定正数a,b,使得
设有3维列向量问λ取何值时(1)β可由α1,α2,α3线性表示,且表达式唯一?(2)β可由α1,α2,α3线性表示,但表达式不唯一?(3)β不能由α1,α2,α3线性表示?
设齐次线性方程组其中a≠0,6≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫0af(x)dx+∫0bg(x)dx=ab,其中g(x)是f(x)的反函数.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。求矩阵A的特征值和特征向量。
求下列不定积分:(Ⅰ)∫aresinχ.arccosχdχ;(Ⅱ)∫χ2sin2χdχ;(Ⅲ)
设p(x)在[a,b]上非负连续,f(x)与g(x)在[a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b},判别I1=(x)f(y)p(y)g(y)dxdy的大小,并说明理由.
(91年)曲线y=的上凸区间是=______.
设,则I,J,K的大小关系为()
已知方程的两个解y1=ex,y2=x,则该方程满足初值y(0)=1,y’(0)=2的解y=____.
随机试题
在语文课堂上,王老师在上《西门豹》一课时,先概述了封建社会的特征,然后过渡到教学内容。根据奥苏贝尔的学习理论,这里的概述可以称为()
函数在点x=0处连续,则k等于()
确定残髓炎最可靠的方法是
A、蛔虫腹痛、止蛔B、气血虚衰证C、肾阳不足阳痿D、肝肾不足眩晕E、寒饮伏肺咳喘细辛主治的病证是
子宫颈癌的早期典型症状是()。
在同样的土层同样的深度情况下,作用在下列哪一种支护结构上的土压力最大?()
正常施工条件下,完成单位合格建筑产品所需某材料的不可避免损耗量为0.90kg,已知该材料的损耗率为7.20%,则其总消耗量为()kg。【2014年真题】
下面的三角形表示某省五种产业的数量按地域划分(城区、郊区、乡村)所占百分比。图上的字符表示各种工业,三角形的顶点表示100%,与该顶点相对的基线表示0%。例如,该省所有的加工企业中,约有70%地处城市,5%位于乡村,25%在郊区。哪一种产业在城区
阅读下列材料并回答问题:材料12004年初,54岁的金文元从延边军分区副司令岗位上退休。当年4月16日,他来到安图县镜城村村外10多公里处的荒山脚下,找了几个村民,盖起一座简易房子,没有水、电,一个人开始了退休生活。10年前的
Selectingamobilephoneforpersonaluseisnotaneasytaskbecausetechnology______sorapidly.
最新回复
(
0
)