首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设n元实二次型f(x1,x2,…,x3)=xTAx,其中A又特征值λ1,λ2,…,λn,且满足λ1≤λ2≤…≤λn. 证明对任何n维列向量x,有 λ1xTx≤λ2xTx≤…≤λnxTx. (2)设f(x1,x2,x3)=(x1,x2,x3)=xTAx
(1)设n元实二次型f(x1,x2,…,x3)=xTAx,其中A又特征值λ1,λ2,…,λn,且满足λ1≤λ2≤…≤λn. 证明对任何n维列向量x,有 λ1xTx≤λ2xTx≤…≤λnxTx. (2)设f(x1,x2,x3)=(x1,x2,x3)=xTAx
admin
2020-02-28
71
问题
(1)设n元实二次型f(x
1
,x
2
,…,x
3
)=x
T
Ax,其中A又特征值λ
1
,λ
2
,…,λ
n
,且满足λ
1
≤λ
2
≤…≤λ
n
.
证明对任何n维列向量x,有
λ
1
x
T
x≤λ
2
x
T
x≤…≤λ
n
x
T
x.
(2)设f(x
1
,x
2
,x
3
)=(x
1
,x
2
,x
3
)
=x
T
Ax,当x
1
2
+ x
2
2
+ x
3
2
=1时,求f(x
1
,x
2
,x
3
)的最大值.
选项
答案
(1)f(x
1
,x
2
,…,x
3
)是实二次型,有正交变换x=Qy,其中Q是正交矩阵,使得 [*] 因λ
1
≤λ
2
…≤λ
n
,故得 λ
1
(y
1
2
+y
2
2
+…+ y
n
2
)≤λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
≤λ
n
(y
1
2
+y
2
2
+…+ y
n
2
). 因x=Qy,其中Q是正交阵,Q
T
Q=E,故 x
T
x=(Qy)
T
Qy=y
T
Q
T
Qy= y
T
y, 故有λ
1
x
T
x≤x
T
Ax≤λ
n
x
T
x. (2)[*] A有特征值λ
1
=0<λ
2
=4<λ
3
=9. 由上一题知,当x
1
2
+x
2
2
+ x
3
2
= x
T
x=1时,对任何x,有 f(x
1
,x
2
,x
3
)=x
T
x≤λ
3
x
T
x=9. 即此时f(x
1
,x
2
,x
3
)的最大值为9.
解析
转载请注明原文地址:https://kaotiyun.com/show/CxA4777K
0
考研数学二
相关试题推荐
证明:,其中a>0为常数.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设f(χ)连续,∫0χtf(χ-t)dt=1-cosχ,求f(χ)dχ.
设f(x)在闭区间[1,2]上可导,证明:ξ∈(1,2),使f(2)一2f(1)=ξf’(ξ)一f(ξ).
设随机变量X关于随机变量Y的条件概率密度为fX|Y(x|y)=,而Y的概率密度为fY(y)=,求(1)(X,Y)的概率密度f(x,y).(2)关于X的边缘概率密度fX(x).(3)P{x>);(4)X与Y是否相互独立?
已知是矩阵的一个特征向量。[img][/img]问A能不能相似对角化?并说明理由。
将函数展开成(x一2)的幂级数.
连续函数f(χ)满足f(χ)=3∫0χf(χ-t)dt+2,则f(χ)=_______.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在
随机试题
A、Whetherthepracticeshouldbeallowedtocontinueinfuture.B、Whetherthereshouldbeaminimumagelimitforexecution.C、W
A.碘酊B.过氧乙酸C.戊二醛D.漂白粉E.乙醇胃镜的消毒可采用
治疗温热病邪入血分,发斑,神昏,壮热。宜选用
某公司某项目(以下简称工程),总投资为768万元,其中设备投资为370万元,土建及其他投资为398万元。公司于2001年9月27日办理了该工程的《村镇规划选址意见书》,2002年2月8日开始办理土地审批手续。2001年11月,公司将工程发包给自称是挂靠某建
2015年1月1日,某地方政府拟采购A物资。在实施招标采购过程中,甲公司向该地方政府提供的生产资质为去年非法取得。在采购执行过程中,由于其他原因,该地方政府对该采购事项予以废标。要求:根据上述资料,回答下列问题。该地方政府的预算应由()批准。
下列选项中,关于商业银行从事理财产品销售活动的说法,正确的是()。
某小学六(3)班是全校有名的乱班,上课纪律混乱,打架成风。班上有一名“在野学生领袖”,喜好《水浒》人物,爱打抱不平,常常“为朋友两肋插刀”。打架时,只要他一挥手,其他人就蜂拥而上。班上正气不能抬头,班干部显得软弱无力,一全班同学的学习成绩逐步下降。如何
foodsecurity
Areyoufacingasituationthatlooksimpossibletofix? In1969,thepollutionwasterriblealongtheCuyahogaRivernearC
EuropeanimmigrantstoColonialAmericabroughtwiththemtheirculture,traditionsandphilosophyabouteducation.Manyof【S1】_
最新回复
(
0
)