首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则R(A)≥R(B); ②若R(A)≥R(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则R(A)=R(B); ④若R
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则R(A)≥R(B); ②若R(A)≥R(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则R(A)=R(B); ④若R
admin
2018-11-22
71
问题
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题
①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);
②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则R(A)=R(B);
④若R(A)=R(B),则Ax=0与Bx=0同解。
以上命题中正确的是( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
选(B)。因为①中条件保证了n-R(A)≤n-R(B),所以R(A)≥R(B)。而进一步易知③正确,而②、④均不能成立。
转载请注明原文地址:https://kaotiyun.com/show/SbM4777K
0
考研数学一
相关试题推荐
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α3,α2,α1,β1,β2|等于()
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()=1,f(1)=0.证明:(1)存在η∈(,1),使得f(η)=η;(2)对任意的k∈(—∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
设η1,…,ηs是非齐次线性方程组AX=b的一组解,则k1η1+…+ksηs为方程组AX=b的解的充分必要条件是___________.
试写出oyz面上的双曲线分别绕z轴和y轴旋转而产生的旋转面的方程.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程y”+ay’+by=cex的一个特解,试确定常数a,b,c及该方程的通解.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为X1和X2.试证:对任意满足a+b=1的常数a、b,都是μ的无偏估计.并确定a、b,使D(T)达到最小.
利用中心极限定理证明:
设L为圆周x2+y2=R2的逆时针方向,则曲线积分=_______.
求解下列方程:(I)求方程xy”=y’lny’的通解;(Ⅱ)求yy”=2(y’2一y’)满足初始条件y(0)=1,y’(0)=2的特解.
f(x)g(x)在x0处可导,则下列说法正确的是().
随机试题
对于胞内寄生虫的免疫逃逸机制,下列哪一项错误
采用分页式存储管理时,相对地址由两部分组成:( )和( )。
某混凝土试验室配合比为水泥:水:砂:碎石=340:190:608:1215,实测施工现场砂的含水率为3%,碎石的含水率为1%,若工地搅拌机容量为0.4m3(出料),为施工方便,每次投入2袋水泥(50kg/袋),问其他各材料的投入量为多少?
在分部分项工程量清单编制时,下列项目特征中可不描述的有()。
甲企业的有关情况如下:(1)2013年1月,甲企业为支付A企业的货款,向A企业签发一张100万元的转账支票。出票日期为1月10日,付款人为乙银行。持票人A企业于1月18日到乙银行提示付款时,乙银行以出票人甲企业的存款账户资金不足100万元为由拒绝
FormaccountissuedA.usuallymadeinthe(56)______ofacheckB.Aterminationnoticeshouldbe(57)______bythepersonneldepar
•ReadthetextbelowaboutjobprospectsattheIBCBank.•ChoosethecorrectwordA,B,CorDfrombelowthepassagetofille
Whichofthefollowingcontainsacomplement?
Whatisthenewsitemmainlyabout?
A、Iusuallygofishing.B、Iamateacher.C、IcomefromAmerica.D、Yes,Ido.A应该具体回答所做的事情,故选A。
最新回复
(
0
)