首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。 求常数a,b及所用的正交变换矩阵Q;
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。 求常数a,b及所用的正交变换矩阵Q;
admin
2019-01-13
29
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
一2x
1
x
2
—2x
1
x
3
+2ax
2
x
3
通过正交变换化为标准形2y
1
2
+2y
2
2
+by
3
2
。
求常数a,b及所用的正交变换矩阵Q;
选项
答案
二次型矩阵及其对应的标准形矩阵分别为 [*] 由矩阵B可知矩阵A的特征值为2,2,6。由矩阵A的迹tr(A)=3=2+2+b可得b=一1。 由于2是A的二重特征值,而实对称矩阵A必可相似对角化,所以矩阵A的对应于特征值2的线性无关的特征向量有两个。于是矩阵2E—A的秩为1,而 [*] 所以a=一1。 由(λ
i
E—A)x=0(i=1,2,3)解得特征值λ
1
=λ
2
=2和λ
3
=一1对应的特征向量分别为 α
1
=(1,0,一1)
T
,α
2
=(0,1,一1)
T
,α
3
=(1,1,1)
T
, 由于实对称矩阵的属于不同特征值的特征向量正交,所以先将α
1
,α
2
正交化,即 β
1
=α
1
=(1,0,一1)
T
,[*] 再将β
1
,β
2
,α
1
单位化,即 [*] 则正交变换矩阵 Q=(γ
1
,γ
2
,γ
3
)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Sfj4777K
0
考研数学二
相关试题推荐
(2002年)设函数f(χ)连续,则下列函数中必是偶函数的是
求极限:.
证明:函数f(x)在x0处可导的充要条件是存在一个关于△x的线性函数L(△x)=α△x,使=0.
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
设向量组(I)α1,α2,…,αs线性无关,(II)β1,β2,…,βs线性无关,且αi(i=1,2,…,s)不能由(II)β1,β2,…,βs线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r,证明:(I)与(Ⅱ)等价.
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的
已知齐次方程组为其中ai≠0.(1)讨论a1,a2,…,an和b满足何种关系时方程组有非零解;(2)在方程组有非零解时,写出一个基础解系.
设则f(x,y)在点(0,0)处()
随机试题
药物分析学科是整个药学科学领域中一个重要的组成部分,其研究的目的是
在罗某放火案中,钱某、孙某和吴某3家房屋均被烧毁。一审时,钱某和孙某提起要求罗某赔偿损失的附带民事诉讼,吴某未主张。一审判决宣告后,吴某欲让罗某赔偿财产损失。下列哪一说法是正确的?
根据《建设工程安全生产管理条例》在施工现场安装、拆卸施工起重机械和整体提升脚手架、模板等自升式架设设施,必须由具有()承担。
计算土压(泥水压)控制值时,一般沿隧道轴线取适当间隔,按各断面的土质条件,计算出上限值与下限值,并根据施工条件在其范围内设定。设定原则正确的说法是()。
所谓变造会计凭证、会计账簿及其他会计资料,是指以虚假的经济业务事项为前提编造不真实的会计凭证、会计账簿和其他会计资料。()
股票内在价值的计算方法模型中,假定股票永远支付固定股利的模型是( )。
师德的灵魂是()
人民民主专政的阶级机构中,领导阶级为()
诬告陷害罪的对象()。
SummaryListentothepassage.Forquestions26—30,completethenotesusingnomorethanthreewordsforeachblank.Threemain
最新回复
(
0
)