首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ). (2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明: (1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ). (2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
admin
2019-07-22
26
问题
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:
(1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ).
(2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
选项
答案
(1)令φ(χ)=[*]f(χ),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在ξ∈(a,b),使得φ′(ξ)=0, 而φ′(χ)=[*][f′(χ)-2χf(χ)]且[*]≠0,故f′(ξ)=2ξf(ξ). (2)令φ(χ)=χf(χ),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0, 由罗尔定理,存在η∈(a,b),使得φ′(η)=0, 而φ′(χ)=χf′(χ)+f(χ),故ηf′(η)+f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ShN4777K
0
考研数学二
相关试题推荐
设f(χ)三阶可导,=0,证明:存在ξ∈(0,1),使得f″′(ξ)=0.
设f(χ)连续,证明:∫0χ[∫0tf(u)du]dt=∫0χf(t)(χ-t)dt.
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
计算二重积分(x0+4x+y0)dxdy,其中D是曲线(x0+y0)0=a0(x0-y0)围成的区域.
设A=①a,b取什么值时存在矩阵X,满足AX-AX=B?②求满足AX-AX=B的矩阵X的一般形式.
设y=(1+x2)arctanx,求y’.
求极限
设有方程y’+P(x)y=x2,其中试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
随机试题
选择汽车广告媒体应考虑的因素有_______。
Youneverseehim,butthey’rewithyoueverytimeyoufly.Theyrecordwhereyouaregoing,howfastyou’retravelingandwheth
细菌生长曲线中,细菌在数量上没有改变的阶段是在()。
钩端螺旋体病的主要传染源为
为防止中草药变性,影响疗效,煎药用具不宜选
根据系统安全工程的观点,危险是指()。
根据()划分,证券市场可分为证券发行市场和证券交易市场。
()不是商业银行固定资产贷前调查报告的内容。
金灶顺弟的父亲姓冯,小名金灶。他家历代务农,辛辛苦苦挣起了一点点小产业,居然有几亩自家的田,一所自家的屋。金灶十三四岁的时候,长毛贼到了徽州,中屯是绩溪北乡的大路,整个村子被长毛烧成平地。金灶的一家老幼都被杀了,只剩他一人,被长毛掳去。长毛军
下列有关法的普遍性的说法不正确的是()。
最新回复
(
0
)