首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
admin
2021-11-25
69
问题
设二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
经过正交变换X=QY化为标准形f=y
1
2
+y
2
2
+4y
3
2
,求参数a,b及正交矩阵Q.
选项
答案
f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
的矩阵形式为 f=X
T
AX 其中[*],因为Q
T
AQ=B=[*],所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4 而|λE-A|=λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2),所以有 λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2)=(λ-1)
2
(λ-4) 解得a=2,b=1. 当λ
1
=λ
2
=1时,由(E-A)X=0得ξ
1
=[*],ξ
2
=[*], 当λ
3
=4时,由(4E-A)X=0得ξ
3
=[*] 显然ξ
1
,ξ
2
,ξ
3
两两正交,单位化为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Spy4777K
0
考研数学二
相关试题推荐
[*]
[*]
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程z+lnz—=1确定并满足z(0,0)=1的函数,求.结果用fi′(0,1),fij″(0,1)表示(i,j=1,2).
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T问:(I)a,b取何值时,β不能由α1,α2,α3线性表示?(Ⅱ)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0),若二次型f的标准形为f=y12+2y22+5y32,求a的值及所使用的正交变换矩阵。
设A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn)。记向量组(I)α1,α2,…,αn,向量组(Ⅱ)β1,β2,…,βn,向量组(Ⅲ)γ1,γ2,…,γn。已知向量组(Ⅲ)线性相关,则有()
函数的图形在点(0,1)处的切线与x轴交点的坐标是()
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且,又f’(x)=-2x2+∫0xg(x-t)dt,则().
设f(χ)为单调可微函数,g(χ)与f(χ)互为反函数,且f(2)=4,f′(2)=,f′(4)=6,则g′(4)等于().
已知a,b,c不全为零,证明方程组只有零解.
随机试题
HPLC仪检测器的作用是将流出物中的样品的组成和含量的变化转化为可供检测的信号,完成定性定量分析的任务。
非正式的刑法解释
男性,18岁,反复头晕、乏力2年,加重3个月。实验室检查RBC3.0×1012/L,Hb60g/L,MCV67.2f1.MCH20pg,MCHC300g/L,白细胞4×109/L,网织红细胞1.2%。最有可能的诊断是
腹股沟管的内环位于
关于测量标志的使用,说法错误的是()。
行政复议撤销决定的适用情形有()。
含有重要国家秘密,泄露会使国家的安全与利益遭受到严重损害的文件属于()。
根据下表,回答121~125题。2004年中美之间的贸易顺差为()。
(2010下集管)在信息系统试运行阶段,系统失效将对业务造成影响。针对该风险,如果采取“接受”的方式进行应对,应该______。
Gestures—especially______ones.Spelloutwordsinthe______.
最新回复
(
0
)