首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
admin
2015-06-30
92
问题
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤
|f(x)|.证明:f(x)≡0,x∈[0,1].
选项
答案
因为f(x)在[0,1]上可导,所以f(x)在[0,1]上连续,从而|f(x)|在[0,1]上 连续,故|f’(x)|在[0,1]上取到最大值M,即存在x
0
∈[0,1],使得|f(x
0
)|=M. 当x
0
=0时,则M=0,所以f(x)≡0,x∈[0,1]; 当x
0
≠0时,M=|f(x
0
)|=|f(x
0
)-f(0)|=|f’(ξ)|x
0
≤|f’(ξ)|≤[*] 其中ξ∈(0,x
0
),故M=0,于是f(x)≡0,x∈[0,1].
解析
转载请注明原文地址:https://kaotiyun.com/show/Sw34777K
0
考研数学二
相关试题推荐
设X~U(0,1),Φ(x)是标准正态分布的分布函数,Φ-1(x)是Φ(x)的反函数,则Y=Φ-1(X)的分布为()。
设二元函数则下述命题①f’x(0,0)=0,f’y(0,0)=0②若z=f[sint,ln(1+t)],则|t=0.正确与否的结论是()。
设函数f(x)在(a,+∞)内有二阶导数,且f(a+1)=0,,,求证在(a,+∞)内至少有一点,使得f"(ε)=0.
设常数p>1.证明级数收敛。
差分方程的通解为.
设A是3阶矩阵,3维非零列向量α不是A的特征向量,且A2α+Aα-2α=0,f(x)=|xE-A|,则存在x0∈(-2,1)使得曲线y=f(x)在(x0,f(x0))处的切线垂直于()
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:存在不同的ξ,η∈(0,1),使得ξ2f”(ξ)=2f’(η)(ξ-1).
以y=C1+e-3x(C2cos2x+C3sin2x)为通解的常系数齐次线性微分方程可以为()
设f(u)为连续函数,且=__________.
随机试题
HarvardprofessorHarveyMansfieldstirredupcontroversyrecentlybycriticizingtheviolentgradeinflationathisinstitution
水平渠道冲突是指同一渠道系统各个不同层次间企业的利益冲突。
患者,男,55岁。右上腹胀痛、消瘦2个月,发热1周。查体:体温38.5℃,皮肤巩膜轻度黄染,肝肋下3.0cm,质硬,表面有结节。最有助于确诊的检查是
男,68岁,进行性排尿闲难,尿线变细,饮酒后症状加重。该患者最可能的病因是
关于LOF和ETF的区别,以下表述错误的是()。
下列不属于《中华人民共和国银行业监督管理法》明确的我国银行业监督管理目标的是()。
某公司股东发现本公司经理在经营中收受贿赂,给公司造成损失,该股东应先向监事会反映,如无结果才可以向人民法院提起诉讼。( )
《教我如何不想他》的词曲作者分别是()。
下列选项中,可以成立的表述是()。
下列叙述中正确的是
最新回复
(
0
)