首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
admin
2015-06-30
61
问题
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤
|f(x)|.证明:f(x)≡0,x∈[0,1].
选项
答案
因为f(x)在[0,1]上可导,所以f(x)在[0,1]上连续,从而|f(x)|在[0,1]上 连续,故|f’(x)|在[0,1]上取到最大值M,即存在x
0
∈[0,1],使得|f(x
0
)|=M. 当x
0
=0时,则M=0,所以f(x)≡0,x∈[0,1]; 当x
0
≠0时,M=|f(x
0
)|=|f(x
0
)-f(0)|=|f’(ξ)|x
0
≤|f’(ξ)|≤[*] 其中ξ∈(0,x
0
),故M=0,于是f(x)≡0,x∈[0,1].
解析
转载请注明原文地址:https://kaotiyun.com/show/Sw34777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
设f(x1,x2,x3)=xTAx=x21+x22+x23+4xl戈2+4x1x3+4x2x3,求正交变换化二次型为标准形,并求当x满足xTx=x21+x22+x23=2时,f(x1,x2,x3)的最大值。
[*]
设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3的正惯性指数p=2,负惯性指数q=0,且可用可逆性变换x=Cy将其化成二次型g(y1,y2,y3)=2y12+9y22+3y32+8y1y2-4y1y3-10y2y
设X1,X2,X3,X4是取自正态总体N(0,4)的简单随机样本,记X=a(X1-2X2)2+b(3X3-4X4)2,其中a,b为常数,已知X~χ2(n)分布,则()。
根据下列条件,进行回答。当x>0时,证明方程2ln(1+x)=x有唯一实根ξ。
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为().
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
积分=________.
设f(f)在[0,π]上连续,在(0.π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
随机试题
关系中每一个属性都有一个取值范围,称为属性的________。
一住店客人未付房钱即要离开旅馆去车站,旅馆服务员见状揪住他不让走,并打报警电话。客人说:“你不让我走还限制我自由,我要告你们旅馆,耽误了乘火车要你们赔偿。”旅馆这样做的性质应如何认定?
()属于后生动物。
在对标书详细评审中,技术评审的主要内容包括投标书的技术方案、技术措施、组织机构、进度及()等进行分析评价。
某企业以8%的年利率借得100000元,投资于某个寿命为5年的项目上,为使该项目有利可图,每年至少应收回的现金数额为()元。
剧烈运动时血浆的pH值()。
读某“科学园区开发成功的区位因素表”和“技术城结构示意图”,分析回答下列问题。该科学园为新兴工业区。据表说明该类工业区的交通运输特点。
全国法院坚持问题导向,梳理原因,对症施策,精准执行,形成了一个“党委领导、人大监督、政府支持、政法委协调、法院主办、部门配合、社会各界参与”的执行工作大格局,______________了一套完善的执行工作体制机制,______________了一批完备的
已知α1=(1,0,0)T,α2=(1,2,-1)T,α3=(-1,1,0)T,且Aα1=(2,1)T,Aα2=(-1,1)T,Aα3=(3,-4)T,则A=_______.
A、Itwasmadebyawell-knownartist.B、Itishand-painted.C、Itisfromanothercountry.D、Itisrare.B细节题。女士想要买那个瓷盘(potteryp
最新回复
(
0
)