首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
微分方程y″—4y′=2cos22x的特解可设为
微分方程y″—4y′=2cos22x的特解可设为
admin
2019-01-29
75
问题
微分方程y″—4y′=2cos
2
2x的特解可设为
选项
A、Ax+B
1
cos4x+B
2
sin4x
B、A+B
1
cos4x+B
2
sin4x
C、B
1
cos
2
2x+B
2
sin
2
2x
D、B
1
cos4x+B
2
sin4x
答案
A
解析
方程右端的非齐次项
f(x)=2cos
2
2x=1+cos4x,
相应齐次方程的特征方程是
λ
2
—4λ=0.
特征根λ
1
=0,λ
2
=4.
利用解的叠加原理:相应于非齐次项f
1
(x)=1,有形式为y
1
*
(x)=Ax(λ
1
=0为单特征根)的特解,A为待定常数;相应于非齐次项f
2
(x)=cos4x,有形式为y
2
*
(x)=B
1
cos4x+B
2
sin4x的特解,B
1
,B
2
为待定常数.因此,原方程的特解可设为
Ax+B
1
cos4x+B
2
sin4x.
故应选A.
转载请注明原文地址:https://kaotiyun.com/show/Swj4777K
0
考研数学二
相关试题推荐
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
设A是n阶矩阵,λ是A的r重特征根,A的对应于λ的线性无关的特征向量是k个,则k=____________。
求V(t)=[(t一1)y+1]dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,一≤y≤1},2≤t≤3。
设f(χ)有连续导数,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt且当χ→0时,F′(χ)与χk是同阶无穷小,则k等于【】
已知y1=3,y2=3+χ2,y3=3+eχ.是二阶线性非齐次方程的解,则所求方程为_______,通解为_______.
用变量代换x=sint将方程(1-x2)化为y关于t的方程,并求微分方程的通解.
设f(x)连续,且∫0一1tf(2x一t)dt=arctanx3)=1,求∫11(dx)。
随机试题
请你谈谈大树移植过程中为保证成活,通常应采取哪些技术措施?
某甲与某乙所在单位要评选“先进工作者”,某甲认为某乙是其最有力的竞争者,为不让某乙评上,某甲即散布某乙有虚报成绩等谣言,使某乙未能评上“先进工作者”,某乙因此精神受到极大打击。某甲的行为侵犯了某乙的()。A.荣誉权B.隐私权C.名誉权D.健
A、Cutdownthefigureofunemployment.B、Provideabettereducationfortheunemployed.C、Eliminatethenumberofunemployment.
盆腔炎中淋病奈瑟菌主要通过何种途径传染
患儿,男,14岁。进行性开口困难7年,面部明显不对称。5岁时曾发生颏部对冲性损伤。该病最可能的诊断是
下列哪项是确定城市性质的最主要依据()
下列关于债券的特征的说法中,错误的是()
新课程积极倡导的学生观是()。①学生是发展的人②学生是独特的人③学生是单纯抽象的学习者④学生是完整的人
从某物流园区开出6辆货车,这6辆货车的平均装货量为62吨,已知每辆货车载重量各不相同且均为整数,最重的装载了71吨,最轻的装载了54吨。问这6辆货车中装货第三重的卡车至少装载了多少吨?
EarthHourisanannualglobalcampaignthatencouragespeopleandbusinessesaroundtheworldtoswitchoff【B1】______atthesa
最新回复
(
0
)