首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[1,2]上连续,在(1,2)内可导,且f(χ)≠0(1<χ<2),又存在且非零,证明: (1)存在ξ∈(1,2),使得 (2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f′(η)ln2.
设f(χ)在[1,2]上连续,在(1,2)内可导,且f(χ)≠0(1<χ<2),又存在且非零,证明: (1)存在ξ∈(1,2),使得 (2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f′(η)ln2.
admin
2019-08-23
59
问题
设f(χ)在[1,2]上连续,在(1,2)内可导,且f(χ)≠0(1<χ<2),又
存在且非零,证明:
(1)存在ξ∈(1,2),使得
(2)存在η∈(1,2),使得∫
1
2
f(t)dt=ξ(ξ-1)f′(η)ln2.
选项
答案
(1)令h(χ)=lnχ,F(χ)=∫
1
χ
f(t)dt,且F′(χ)=f(χ)≠0, 由柯西中值定理,存在ξ∈(1,2),使得[*], 即[*]. (2)由[*]存在,得f(1)=0, 由拉格朗日中值定理得f(ξ)=f(ξ)-f(1)=f′(η)(ξ-1),其中1<η<ξ, 故∫
1
2
f(t)dt=ξ(ξ-1)f′(η)ln2.
解析
转载请注明原文地址:https://kaotiyun.com/show/T9A4777K
0
考研数学二
相关试题推荐
设函数y=y(x)由方程y=1一xey确定,则=______。
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明:存在ξ∈(0,3),使f’’(ξ)=0。
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
微分方程2y”-5y’﹢2y=xe2x的通解为y=_______.
设微分方程xf”(x)-f’(x)=2x.(I)求上述微分方程的通解;(Ⅱ)求得的解在x=0处是否连续?若不是,能否对每一个解补充定义,使其在x=0处连续,并讨论补充定义后的f(x)在x=0处的f’(0)及f”(0)的存在性,要求写出推理过程.
求微分方程满足y(-2)=0并且在定义的区间上可导的特解y(x),并求它的定义区间.
设当x∈[-1,1,1]时,f(x)连续,F(x)=∫-11|x-t|]f(t)dt,x∈[-1,1].(I)若f(x)为偶函数,证明F(x)也是偶函数;(Ⅱ)若f(x)>0(-1≤x≤1),证明曲线y=F(x)在区间[-1,1]上是凹的.
设幂级数的系数满足a0=2,nan=an-1+n—1,n=1,2,…,求此幂级数的和函数S(x),其中x∈(一1,1).
设线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
设p(x)在[a,b]上非负连续,f(x)与g(x)在[a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b),判别I1=P(x)f(x)P(y)g(y)dxdy,I2=p(x)f(y)p(y)g(y)dxdy的大小,并说明理由.
随机试题
呼吸系统患病的常见部位,且不易早期诊断和发现的是
下列有关中性粒细胞的免疫活性的叙述中,哪一项是错误的
下列哪项不属于霍乱弧菌的致病物质()
应专门监护的加强子宫收缩的措施是
人民法院判决被告重新作出具体行政行为的,被告( )。
某施工单位承接了一个标段的二级公路工程施工任务。项目中有大量小型预制构件需要预制,施工单位决定就近选择场地布置预制场。在预制场建设准备和预制施工中有如下事件发生:事件1:考虑到路线较长,项目部决定对路基排水工程的水沟盖板、防护工程的各型预制块、隧
净利润是由( )等因素所构成。
Asregardssocialconventions,wemustsayawordaboutthewell-knownEnglishclasssystem.Thisisanembarrassingsubjectfor
STP的拓扑变化通知BPDU的长度不超过()。
Therestaurantfeaturesawide-openkitchensurroundedbywoodencountersonthreesides,whereabrigadeofassiduouschefswit
最新回复
(
0
)