首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+kα3线性无关是向量组α1,α2,α3线性无关的
(2014年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+kα3线性无关是向量组α1,α2,α3线性无关的
admin
2018-07-30
51
问题
(2014年)设α
1
,α
2
,α
3
均为3维向量,则对任意常数k,l,向量组α
1
+kα
3
,α
2
+kα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
方法1:记向量组(Ⅰ):α
1
+kα
3
,α
2
+lα
3
;
向量组(Ⅱ):α
1
,α
2
,α
3
.
(Ⅰ)是由(Ⅱ)线性表出的,写成矩阵形式即是:
[α
1
+α
3
,α
2
+lα
3
]=[α
1
,α
2
,α
3
]
当(Ⅱ)线性无关时,矩阵[α
1
,α
2
,α
3
]为列满秩的,由于用列满秩阵左乘矩阵后,矩阵的秩不变,而矩阵
的秩为2,所以此时上式等号左边矩阵的秩也为2,也就是该矩阵的列秩为2,从而知向量组(Ⅰ)线性无关,所以,(Ⅰ)线性无关是(Ⅱ)线性无关的必要条件.
但(Ⅰ)线性无关不是(Ⅱ)线性无关的充分条件,例如当是k=l=0时,(Ⅰ)线性无关即向量组α
1
,α
2
线性无关,却不能保证(Ⅱ)线性无关.
方法2:设有常数x
1
,x
2
,使得
x
1
(α
1
+kα
3
)+x
1
(α
2
+lα
3
)=0
即x
1
α
1
+x
2
α
2
+(x
1
k+x
2
l)α
3
=0,
若(Ⅱ)线性无关,则x
1
=x
2
=x
1
k+x
2
l=0,故由定义知(Ⅰ)线性无关.但若(Ⅰ)线性无关,(Ⅱ)却未必线性无关,例如α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=0,则(Ⅰ)线性无关,但(Ⅱ)却线性相关.因此,(Ⅰ)线性无关是(Ⅱ)线性无关的必要非充分条件.
转载请注明原文地址:https://kaotiyun.com/show/T9j4777K
0
考研数学二
相关试题推荐
设X,Y是离散型随机变量,其联合概率分布为P{X=xi,Y=yj}=pij(i,j=1,2,…),边缘概率分别为piX和pjY(i,j=1,2,…),则X与Y相互独立的充要条件是pij=piXpjY(i,j=1,2,…)
A是二阶矩阵,有特征值λ1=1,λ2=2,f(x)=x2一3x+4,则f(A)=________.
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
讨论,在点(0,0)处的连续性、可偏导性及可微性.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
求曲y=x2-2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
随机试题
根顶端具有多数疣状突起的茎痕及芽,习称“狮子头”的药材是
depressedtracture
逍遥散中,君药是逍遥散中,肝经引经药是
下列哪种不是测定咀嚼效率的方法
属镇痛药三阶梯用药原则中第二阶梯的药物是
不以诉讼活动为前提的对违宪审查称之为()
儿童的数概念的形成,经历的阶段分别是()。
盘庚迁殷
Whydothelessdevelopedcountrieswelcomethemultinationals?Whatdoestheword"tug-of-war"probablyreferto?
Examiner:Lily,wheredoyoucomefrom?CandidateA:IwasborninBeijing,andgrewuphere.Thepopulationofmyhometownis17mi
最新回复
(
0
)