首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-03-11
69
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=一2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
一α
1
C、α
1
+2α
2
+3α
3
D、2α
1
一3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)=0α
1
一2α
3
=一2α
3
,故一2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
一α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
一3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://kaotiyun.com/show/TCP4777K
0
考研数学三
相关试题推荐
某厂家生产的一种产品同时在两个市场上销售,售价分别为P1,P2,销售量分别为q1,q2,需求函数分别为q1=24一0.2p1,q2=10一0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
幂级数的收敛半径为__________.
设A是n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
计算二重积分I=sin(x2+y2)dxdy,其中积分区域D={(x,y)|x2+y2≤π}.
已知抛物线y=ax2+bx(其中a<0,b>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S,问当a,b为何值时,S最大?最大值是多少?
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(2)设,求出可由两组向量同时线性表示的向量。
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
(Ⅰ)求函数y(x)=1++…(一∞<x<+∞)所满足的二阶常系数线性微分方程;(Ⅱ)求(Ⅰ)中幂级数的和函数y(x)的表达式.
(Ⅰ)由曲线y=lnx与两直线y=e+1一x及y=0围成平面图形的面积S=________;(Ⅱ)由曲线y=2x一与直线y=a及y轴在第一象限所围平面图形的面积是仅由曲线y=2x一及直线y=a所围图形面积的,则a=________.
随机试题
氨基糖苷类抗生素的主要不良反应是
某施工企业对外跨年度提供劳务,交易结果不能可靠估计,但企业在资产负债表日预计已经发生的劳务成本能够得到补偿,此时在会计处理上,应______确认收入。()
在行业的市场结构中,()是由许多企业生产同质产品的市场情形、是竞争充分而不受任何阻碍和干扰的一种市场结构。
下列关于强化理论的说法中正确的是()。
1.题目:远离校园欺凌2.内容:请根据漫画设计一堂心理健康课。3.基本要求:(1)试讲时间控制在10分钟;(2)活动中关注学生的感受变化;(3)试讲中要注意引导性。你的教学难点是什么,你是如何突破教学难点的?
总结我们党八十多年的历史得出的最基本的经验是
已有下图的“学生”关系,欲不重复的统计在此关系中出现的院系,可以用关系运算(61)。
Inthefollowingessay,eachblankhasfourchoices.Choosethebestanswerandwritedownontheanswersheet.Microwavecom
有以下程序#include<stdio.h>main(){charb,c;inti;b=’a’;c=’A’;
A.sufficientB.marginsC.nearlyD.barelyE.advancesF.existG.slaughteredH
最新回复
(
0
)