首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-03-11
35
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=一2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
一α
1
C、α
1
+2α
2
+3α
3
D、2α
1
一3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)=0α
1
一2α
3
=一2α
3
,故一2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
一α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
一3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://kaotiyun.com/show/TCP4777K
0
考研数学三
相关试题推荐
求幂级数的和函数.
设λ1,λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1,λn的特征向量,记求二元函数的最大值及最大值点。
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设a0=1,a1=一2,a2=an(n≥2).证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
设随机变量服从几何分布,其分布律为P{X=k)=(1-p)k-1p,0<p<1,k=1,2,…,求EX与DX.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为(Ⅱ)有一个基础解系(0,1,1,0)T,(一1,2,2,1)T.求(I)和(Ⅱ)的全部公共解.
已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
设曲线y=bx一x2与x轴所围平面图形被曲线y=ax2(a>0)分成面积相等的两部分,求a的值.
(Ⅰ)由曲线y=lnx与两直线y=e+1一x及y=0围成平面图形的面积S=________;(Ⅱ)由曲线y=2x一与直线y=a及y轴在第一象限所围平面图形的面积是仅由曲线y=2x一及直线y=a所围图形面积的,则a=________.
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?
随机试题
简述制作立案侦查类文书应注意的题。
学生思想品德的形成和发展是一个从量变到质变,再从量变到质变的螺旋式上升的过程。()
A.CD16B.CD56C.CD4D.CD5E.CD8TH细胞表面标志
上肢锥体束征是指()
突然停药可以导致“撤药综合征”而加重心绞痛的药物
期末,“销售费用”科目可能有余额,也可能没有余额。()
在识别关联方及其交易后,为确定关联方交易是否已作适当的记录和披露,注册会计师应当()。
一般资料:求助者,男性,33岁,公司职员。案例介绍:今年春节前求助者的父亲在老家突发心脏病去世,求助者将母亲接来同住。最初一个多月的时间里,妻子和母亲还能够和平相处,但随着时间的推移,双方的矛盾逐渐显现出来;从日常的饮食起居到孩子的培养教育都能成
下列文种中,一定属于肯定性态度的是()。
Whatarethesetwopeopletalkingabout?
最新回复
(
0
)