首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
①设α1,α2,…,αs和β1β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1β2,…,βt)≤r(α1,α2,…,αs)+r(β1β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B). ③设A和B是两个列数
①设α1,α2,…,αs和β1β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1β2,…,βt)≤r(α1,α2,…,αs)+r(β1β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B). ③设A和B是两个列数
admin
2017-10-21
34
问题
①设α
1
,α
2
,…,α
s
和β
1
β
2
,…,β
t
都是n维向量组,证明r(α
1
,α
2
,…,α
s
,β
1
β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
)+r(β
1
β
2
,…,β
t
).
②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
③设A和B是两个列数相同的矩阵,
表示A在上,B在下构造的矩阵.证明
选项
答案
这是3个互相等价的命题:①是②的向量形式;③是②的转置形式.因此对其中之一的证明就完成了这3个命题的证明. 证明①.取{α
1
,α
2
,…,α
s
,β
1
β
2
,…,β
t
}的一个最大无关组(I),记(I),是(I)中属于α
1
,α
2
,…,α
s
中的那些向量所构成的部分组,(I)2是(I)中其余向量所构成的部分组.于是(I),和(I)2分别是属于α
1
,α
2
,…,α
s
和β
1
β
2
,…,β
t
的无关部分组,因此它们包含向量个数分别不超过r(α
1
,α
2
,…,α
s
)和r(β
1
β
2
,…,β
t
).从而r(α
1
,α
2
,…,α
s
,β
1
β
2
,…,β
t
)=(I)中向量个数=(I)1中向量个数+(I)
2
中向量个数)≤r(α
1
,α
2
,…,α
s
)+r(β
1
β
2
,…,β
t
).
解析
转载请注明原文地址:https://kaotiyun.com/show/bOH4777K
0
考研数学三
相关试题推荐
设f(x)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得
设n阶矩阵A与对角矩阵合同,则A是().
设且A~B.(1)求a;(2)求可逆矩阵P,使得P—1AP=B.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
判断级数的敛散性.
设(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e—x一3e2x为特解,求该微分方程.
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
随机试题
分离过程可以分为机械分离过程和传质分离过程两大类。
下列关于判断月经周期中的排卵情况的描述错误的是
全国口腔健康调查技术组专家对某省调查人员进行了调查前培训,纠正了一些容易影响调查质量的不足之处。用牙周CPTIN指数只检查6颗指数牙的年龄应在
患者,男,40岁。腰酸痠软,眩晕耳鸣,精神萎靡,性功能减退,并有遗精,早泄。其病因是
雪花膏的基质是
()是指商业银行因没有遵守法律、规则和准则可能遭受法律制裁、监管处罚、重大财务损失和声誉损失的风险。
电子商务按参与交易的对象分类可分为:本地电子商务和全球电子商务。()
我国经济体制改革的目标是建立社会主义市场经济,它的一般特征是()。
法律、法规规定应当先向行政复议机关申请行政复议,行政复议机关决定不予受理的.公民、法人或者其他组织可以自收到不予受理决定书之日起15日内依法提起行政诉讼。()
十进制数60转换成二进制数是()。
最新回复
(
0
)