首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维非零向量α=[a1,a2,…,an]T,β=[b1,b2,…bn]T. 设C=E-αβT,其中E为n阶单位矩阵,证明:CTC=E=βTα-αβT+ββT的充要条件是αTα=1.
设有两个n维非零向量α=[a1,a2,…,an]T,β=[b1,b2,…bn]T. 设C=E-αβT,其中E为n阶单位矩阵,证明:CTC=E=βTα-αβT+ββT的充要条件是αTα=1.
admin
2021-07-27
66
问题
设有两个n维非零向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…b
n
]
T
.
设C=E-αβ
T
,其中E为n阶单位矩阵,证明:C
T
C=E=β
T
α-αβ
T
+ββ
T
的充要条件是α
T
α=1.
选项
答案
由于C
T
C=(E-αβ
T
)
T
(E-αβ
T
)=(E-αβ
T
)(E-αβ
T
)=E-βα
T
-αβ
T
+βα
T
αβ
T
,故若要求C
T
C=E-βα
T
-αβ
T
+ββ
T
,则βα
T
αβ
T
-ββ
T
=O,β(α
T
α-1)β
T
=O,即(α
T
α-1)ββ
T
=O因为β≠0,所以ββ
T
≠O.故C
T
C=E-βα
T
-αβ
T
+ββ
T
的充要条件是α
T
α=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/THy4777K
0
考研数学二
相关试题推荐
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,a33k;f(A)的对角线元素为f(
设A,B为满足AB=O的任意两个非零矩阵,则必有()
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
求定积分的值.
写出下列二次型的矩阵:
设A为三阶矩阵,,则|4A一(3A*)—1|=()
当x→∞时,若,则a,b,c的值一定是[].
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+o(χ3).
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
随机试题
设F(u,υ)可微,且Fu’≠Fυ’,z(x,y)是由方程F(ax+bz,ay—bz)=0(b≠0)所确定的隐函数,求
A脂蛋白变性B胞质内残留的RNA变性C脂肪变性D核碎裂或溶解后的残余物E异常溶酶体豪焦小体
患者,男性,36岁。反复右上腹痛、寒战、黄疸5年,此次发病后黄疸持续不退。体检示:体温39.5℃,脉搏122次/分钟,血压125/85mmHg。右上腹压痛,肌紧张。实验室检查:WBC15.5×109/L,中性粒细胞0.85。血清总胆红素132μmol/L
某学校附近最近发生系列抢劫学生财物的案件,公安干警经过推理判断,该系列抢劫案应该是由与本学校有一定关系的人所为。最终该系列抢劫案成功告破,果然是由该校的肄业生王某所为。公安干警所用的是哪一种推理?
市级商服中心()。
单位负责人必须重视和加强本单位会计人员的道德建设,在任用会计人员时,应当审查会计人员的(),选择业务素质高、职业道德好、无不良记录的人员从事会计工作。
劳动合同在订立和履行的过程中,双方的地位都是平等的。()
有人说,这是一个“监督与谩骂齐飞的时代”。那些与“坏消息”同步出现的质疑、反对、批评乃至批判的声音,有时确实切中时弊,直指要害;有时却不过是在逞口舌之快或显意气之争,其中不乏语言暴力、恶意中伤甚至不明所以的愤恨。有研究者指出,在“坏消息”舆论场中
一、注意事项1.所有题目一律使用现代汉语作答,用其他语言作答不得分;作答时使用黑色字迹的钢笔或签字笔,铅笔作答不得分。2.请仔细阅读给定资料内容,然后按照后面提出的“申论要求”作答。二、给定资料1.尽管官方并不认可中小企业“倒闭潮”这一说法,但现实
【26】【31】
最新回复
(
0
)