首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
微分方程yf’’-4y=xe2x+2sinx的特解形式为( ).
微分方程yf’’-4y=xe2x+2sinx的特解形式为( ).
admin
2019-06-06
63
问题
微分方程yf
’’
-4y=xe
2x
+2sinx的特解形式为( ).
选项
A、(ax
2
+bx)e
2x
+Acosx+Bsinx
B、(ax
2
+bx)e
2x
+x(Acosx+Bsinx)
C、(ax+b)e
2x
+Acosx+Bsinx
D、(ax+b)e
2x
+x(Acosx+Bsinx)
答案
A
解析
特征方程为λ
2
-4=0,特征值为λ
1
=﹣2,λ
2
=2.微分方程y
’’
-4y=xe
2x
的特解为y
1
(x)=x(ax+b)e
2x
=(ax
2
+bx)e
2x
;微分方程y
’’
-4y=2sinx的特解为y
2
(x)=Acosx+Bsinx,故方程y
’’
-4y=xe
2x
+2sinx的特解形式为y
1
(x)+y
2
(x)=(ax
2
+bx)e
2x
+Acosx+Bsinx,应选(A).
转载请注明原文地址:https://kaotiyun.com/show/TQJ4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数为2的指数分布,证明:Y=1-e-2X在区间(0,1)上服从均匀分布.
设随机变量X与Y相互独立,X的概率分布为P(X=1)=P(X=一1)=,Y服从参数为λ的泊松分布.令Z=XY.(I)求Cov(X,Z);(Ⅱ)求Z的概率分布.
设随机变量X与Y相互独立且都服从参数为p的几何分布(0<p<1),令Z=X+Y,求:(Ⅰ)Z的概率分布;(Ⅱ)X与Z的相关系数.
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i(i=1,2,…,n).证明:A相似于B.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设求方程组AX=b的通解.
求方程组的通解.
设曲线与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问以为何值时,V1(a)+V2(a)最大,并求最大值.
设f(x)在[a,b]上二阶可导,且f"(x)>0,证明:f(x)在(a,b)内为凹函数.
计算下列积分:
因k值不同,故分情况讨论:当k>1时,原式=[*]即积分收敛;当k=1时,原式=[*]即积分发散;当k<1时,原式=[*],即积分发散.综上,当k>1时,原积分为[*];当k≤1时,原积分发散.
随机试题
根据《法律援助条例》规定,请求支付劳动报酬的,向()的法律援助机构提出申请。
治疗湿热黄疽可选用
痢疾初起治疗当忌
肢端肥大症患者血钙较高时常提示
实验室测定血清总钙的参考方法是
下列关于磁共振图像矩阵的叙述,正确的是
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?()
下面是某求助者MMPI-2的测验结果24项版本的HAMD量表,其因子数量为()。(A)2(B)3(C)5(D)7
案例:某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标:①掌握勾股定理的内容,体会数形结合思想;②学会运用勾股定理。为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
纯粹从阅读角度看,今天我们的阅读数量是很可观的。我们每天看微博,看新闻客户端,看微信朋友圈,看QQ日志……这最终都能累积为每天的阅读量。碎片化的阅读,确实便利了信息获取,但若是从人文涵养的角度看,碎片化本身意味着不全面,再加上网络阅读的简化,人们由此实现的
最新回复
(
0
)