首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x)在[a,b]上非负且连续,f(x)与g(x)在[a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b},比较 的大小,并说明理由.
设p(x)在[a,b]上非负且连续,f(x)与g(x)在[a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b},比较 的大小,并说明理由.
admin
2018-08-22
59
问题
设p(x)在[a,b]上非负且连续,f(x)与g(x)在[a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b},比较
的大小,并说明理由.
选项
答案
因为 [*] 又由于D关于直线y=x对称,所以I
1
一I
2
又可以写成 [*] 所以 [*] 因g(x)与f(x)的单调性相同,所以[f(x)一f(y)][g(x)一g(y)]≥0,从而知I
1
一I
2
≤0,有I
1
≤I
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/TXj4777K
0
考研数学二
相关试题推荐
设函数f(x),g(x)在[a,b]上连续且单调增,证明:∫abf(x)dx∫abg(x)dx≤(b一a)∫abf(x)g(x)dx.
求其中D={(x,y)|0≤x≤3,0≤y≤1}.
计算不定积分
设f(x),g(x)在[a,b]上连续,证明:至少存在一点ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型记x=(x1,x2,……xn)T,把f(x1,x2,……xn)写成矩阵形式,并证明二次型f(x)的矩阵为A一1;
求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域·
设X的概率密度为f(x)=,一∞<x<+∞,(1)求E(X)和D(X);(2)求X与|X|的协方差,判断X与|X|是否不相关;(3)判断X与|X|是否相互独立.
设随机变量X的概率密度为f(x)=,一∞<x<+∞,求Y=arctanX的概率密度。
计算二重积分其中积分区域D是由y轴与曲线所围成.
随机试题
孙某,男,52岁。平素体弱,去年夏天进食大量冷食,而出现胃部不适纳差。现症:低热,午后热甚,胸闷脘痞,全身重着,不思饮食,大便稀薄,黏滞不爽,舌苔白腻,脉濡数。诊断为
公司负责城市市区危改地块A的土地一级开发工作,甲公司委托乙公司承担拆迁业务。土地一级开发后收归市土地储备中心所有,并以住宅用地性质进行国有土地使用权拍卖。该地块的使用权由丙公司竞买得到。半年后,丙公司将该地块转让给丁公司。丁公司欲在该地块开发商业地产项目,
根据现行国家标准,《建筑消防设施的维护管理》对火灾自动报警系统报警控制器的检测内容主要包括()。
由于货币贬值给投资者带来实际收益水平下降的风险属于()。
上海公民孙某2015年8月从中国境内取得的收入情况如下:(1)取得工资收入10000元。(2)一次性取得演讲收入20000元。(3)出版学术专著一部,出版社支付稿酬90000元。(4)到期国债利息收入1286元。(5)在A国讲学取得收入40000
到2020年基本完成国防和军队改革目标任务。()
据统计,2018年末,全国农村贫困人口1660万人,比上年末减少1386万人;贫困发生率1.7%,比上年下降1.4个百分点,贫困地区农村居民收入加快增长,与全国农村平均水平的差距进一步缩小,假设其他条件不变,对居民收入、贫困人口与贫困发生率
当受到害虫侵袭时,大豆和其他植物会产生一种叫做茉莉酸盐的荷尔蒙,从而启动一系列化学反应,合成更多蛋白酶抑制剂,增强自身的抵抗力。害虫吃下这种化合物以后,其消化功能会受到抑制。植物生物学家德鲁西亚发现高浓度二氧化碳会导致植物丧失分泌茉莉酸盐的能力,整个“防御
企业的实体分析是自顶向下规划的第二层求精,包括许多步骤。下列哪个步骤技术是对企业实体的概括?
HowIceCreamWorksTheU.S.icecreamindustrysellsaboutamilliongallonsoficecreameachyear,dispensingcones,gall
最新回复
(
0
)