首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式; (3)β能用
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式; (3)β能用
admin
2017-10-21
116
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,一3a)
T
,α
3
=(一1,一b一2,a+2b)
T
,β=(1,3,一3)
T
.试讨论当a,b为何值时,
(1)β不能用α
1
,α
2
,α
3
线性表示;
(2)β能用α
1
,α
2
,α
3
唯一地线性表示,求表示式;
(3)β能用α
1
,α
2
,α
3
线性表示,且表示式不唯一,求表示式的一般形式.
选项
答案
记A=(α
1
,α
2
,α
3
),则问题化为线性方程组AX=β解的情形的讨论及求解问题了. [*] (1)a=0(b任意)时 [*] 方程组AX=β无解,=不能用α
1
,α
2
,α
3
线性表示. (2)当a≠0,a≠b时,r(A|β)=r(A)=3,方程组AX=β唯一解,即β可用α
1
,α
2
,α
3
唯一表示. [*] AX=β的解为[*] (3)当a=b≠0时r(A|β)=r(A)=2,AX=β有无穷多解,即β可用α
1
,α
2
,α
3
线性表示,且表示式不唯一. [*] AX=β有特解[*] 而(0,1,1)
T
构成AX=0的基础解系,AX=β的通解为 [*]即[*].c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/TdH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2—α3,α2+α3线性相关,则a=
抛物线y2=2x把圆x2+y2=8分成两个部分,求左右两个部分的面积之比.
设A是n阶正定矩阵,证明:|E+A|>1.
A2一B2=(A+B)(A—B)的充分必要条件是__________.
设A=(α1,α2,α3,α4,α4),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设随机变量X,Y相互独立,且X~,又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率。
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
|A|是n阶行列式,其中有一行(或一列)元素全是1.证明:这个行列式的全部代数余子式的和等于该行列式的值.
假设二维随机变量(X1,X2)的协方差矩阵为其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
随机试题
以下_______不是促销的基本目标。
OneofmyfondestChristmasmemorieswasalsooneofourfamily’sbleakest(最令人沮丧的).Wewerejustlittlekids,andonChristma
为预防麻疹可
患者,男,18岁,感冒后鼻衄,鼻腔干燥,口干,咳嗽少痰,低热,舌质红,苔薄黄,脉数,治法应
“救人闯红灯”是否应受罚?谈谈你的观点。
诗歌的翻译者必须实现字与字的对译,这在任何语言中都是不存在的,正如钢琴的旋律不可能发生在小提琴的演奏中一样。当然,小提琴可以演奏与钢琴同样的作品,但是,只有小提琴演奏者按着小提琴固有的、内在的风格演奏,才可以完美地表现原作的精神。以下哪个选项表明了作者的论
Withineconomictheory,thereareinanycasequitedifferentassumptionsaboutindividualbehaviour.Someneoclassicalmodelsa
在OSI参考模型中指出同一个系统相邻两层实体间交互是通过()进行的。
Manyinstructorsbelievethataninformal,relaxedclassroomenvironmentis【1】tolearningandinnovation.Itisnotuncommon
ACompany’sBattletoShowItWasaVictimofAbusiveShort-sellingA)Shortsellersbetagainstcompaniesbyborrowingtheirs
最新回复
(
0
)