首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式; (3)β能用
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式; (3)β能用
admin
2017-10-21
101
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,一3a)
T
,α
3
=(一1,一b一2,a+2b)
T
,β=(1,3,一3)
T
.试讨论当a,b为何值时,
(1)β不能用α
1
,α
2
,α
3
线性表示;
(2)β能用α
1
,α
2
,α
3
唯一地线性表示,求表示式;
(3)β能用α
1
,α
2
,α
3
线性表示,且表示式不唯一,求表示式的一般形式.
选项
答案
记A=(α
1
,α
2
,α
3
),则问题化为线性方程组AX=β解的情形的讨论及求解问题了. [*] (1)a=0(b任意)时 [*] 方程组AX=β无解,=不能用α
1
,α
2
,α
3
线性表示. (2)当a≠0,a≠b时,r(A|β)=r(A)=3,方程组AX=β唯一解,即β可用α
1
,α
2
,α
3
唯一表示. [*] AX=β的解为[*] (3)当a=b≠0时r(A|β)=r(A)=2,AX=β有无穷多解,即β可用α
1
,α
2
,α
3
线性表示,且表示式不唯一. [*] AX=β有特解[*] 而(0,1,1)
T
构成AX=0的基础解系,AX=β的通解为 [*]即[*].c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/TdH4777K
0
考研数学三
相关试题推荐
设,则α1,α2,α3经过施密特正交规范化后的向量组为
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设A,B是正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
判断级数的敛散性.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e—x一3e2x为特解,求该微分方程.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设A是n阶矩阵,A*是A的伴随矩阵,若|A|=a,则行列式等于().
随机试题
A、Marketingtrainee.B、Financialassistant.C、Managementtrainee.D、Businessassistant.C对话一开始,面试官(即女士)就和男士确认,问他是否申请的是Management
在Word2010中,下列快捷键中哪个可以选择整篇文档___________。
腰椎滑脱、腰椎椎弓峡部裂、脊柱裂分别首选的摄影体位是
[2009年,第109题]某项目建设期3年,共贷款1000万元,第一年贷款200万元,第二年贷款500万元,第三年贷款300万元,贷款在各年内均衡发生,贷款年利率为7%,建设期内不支付利息,建设期利息为()万元。
某地区一栋标志性办公楼地上106层,地下5层,建筑高度为412m,总建筑面积为363000m2,耐火等级一级,屋顶设有直升机停机坪,共设置8个避难层。每层均设有消防电梯。该办公楼按有关国家工程建设消防技术标准配置了消防设施及器材。根据以上材料,回
永恒主义课程理论的主要代表人物是()
在性格形成中起主要作用的不是遗传,而是——。
道德的认识功能是指道德反映社会关系特别是反映社会经济关系的功效与能力。帮助道德实现其认识功能的手段有
Communicationisfarmorethanspeechandwriting.Mostofusareawarethatwearecommunicatinginmanydifferentwaysevenw
Wordsworthwasoneofthegreatestpoets______livedinthe19thcentury.
最新回复
(
0
)