首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(6E一A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(6E一A)=O且a≠b.证明:A可对角化.
admin
2019-05-14
58
问题
设n阶矩阵A满足(aE-A)(6E一A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE—A)(bE—A)=O,得|aE—A|.|bE—A|=0,则|aE—A|=0或者|bE—A|=0,又由(aE—A)(bE—A)=O,得r(aE—A)+r(bE—A)≤n. 同时r(aE—A)+r(bE—A)≥r[(aE—A)一(bE—A)]=r[(a一b)E]=n. 所以r(aE一A)+r(bE—A)=n. (1)若|aE—A|≠0,则r(aE—A)=n,所以r(bE—A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE—A)=n,所以r(aE—A)=0,故A=aE. (3)若|aE—A|=0且|bE—A|=0,则a,b都是矩阵A的特征值. 方程组(aE—A)X=0的基础解系含有n一r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n—r(aE—A)个; 方程组(6E—A)X=0的基础解系含有n一r(bE一A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE—A)个. 因为n一r(aE—A)+n一r(bE—A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Tg04777K
0
考研数学一
相关试题推荐
判断级数的敛散性.
设D由y=及x轴围成,f(x,y)=xy—f(x,y)dxdy,求f(x,y)=________.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=.求矩阵A.
设α为n维非零列向量,A=E-.证明:α为矩阵A的特征向量.
证明:当x>0时,ex-1>(1+x)ln(1+x).
计算曲线积分,其中L为不经过原点的逆时针光滑闭曲线.
由方程sin(xy)+ln(y—x)=x确定函数y=y(x),求|x=0.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
求级数的收敛域与和函数.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球中一个是红球一个是白球;
随机试题
下列关于针刺捻转法的说法。错误的是
当混凝土结构施工质量不符合要求时,经()检测鉴定达到设计要求的检验批,应予以验收。
下面()属于可变更或撤销的合同。
2018年2月,教育部等五部门印发《教师教育振兴行动计划(2018—2022年)》提出要将学习贯彻习近平总书记对教师的殷切希望和要求作为()的首要任务和重点内容。
公安机关的人民警察以()名义开展公安工作。
鸦片战争后,中国逐步被卷入资本主义世界市场。得出该结论的主要依据不包括()。
阅读下列材料,回答问题。材料一:2017年6月27日,夏季达沃斯论坛在大连开幕。“在第四次工业革命中实现包容性增长”是本次夏季达沃斯论坛的主题,同时也为新工业革命时代中的全球经济增长设置了新航标。当前,以“人工智能”“工业4.0”等新兴
[2000年GRK真题](1)一(2)题基于以下题干:小李:如果在视觉上不能辨别艺术复制品和真品之间的差异,那么复制品就应该和真品的价值一样。因为如果两件艺术品在视觉上无差异,那么它们就有相同的品质。要是它们有相同的品质,它们的价格就应该相等。小王:你对艺
下列叙述中正确的是
【B1】【B6】
最新回复
(
0
)