首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1=[1,2,一1,1],α2=[2,0,t,0],α3=[0,一4,5,一2]的秩为2,则t=_________.
已知向量组α1=[1,2,一1,1],α2=[2,0,t,0],α3=[0,一4,5,一2]的秩为2,则t=_________.
admin
2019-05-10
33
问题
已知向量组α
1
=[1,2,一1,1],α
2
=[2,0,t,0],α
3
=[0,一4,5,一2]的秩为2,则t=_________.
选项
答案
因向量个数与维数不相等,可用秩的定义、初等变换、方程组解的理论求之. 解一 由于α
1
,α
2
,α
3
的秩为2,矩阵[*]的任一三阶子行列式的值为零,则[*]=0,解之得t=3. 解二 经初等变换后向量组的秩不变,由 [*] 知,当t+2=5时,由于A
1
中第2、3两行成比例,秩(A
1
)=秩(A)=2,故t=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/TjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上二阶可导,且f(0)=f′(0)=f(1)=f′(1)=0.证明:方程f〞(χ)-f(χ)=0在(0,1)内有根.
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
证明:用二重积分证明
设A为m×n阶矩阵,且r(A)=m<n,则().
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
设三阶矩阵A的特征值为2,3,λ,若行列式|2A|=-48,则λ=_______.
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
随机试题
A.淋巴结结构破坏,大量单一肿瘤性细胞增生B.淋巴结结构破坏,多种炎细胞及R-S细胞增生C.淋巴结内瘤细胞排列成滤泡结构D.淋巴结结构破坏,大量原始粒细胞浸润滤泡性非霍奇金淋巴瘤
A.Ⅰ/甲B.Ⅰ/乙C.Ⅱ/甲D.Ⅱ/乙E.Ⅲ/丙阑尾穿孔术后切口化脓,应记录为
伴有左心室肥厚的高血压患者降压应首选
以下对城市排水体制的选择不合理的是()。
概算定额手册的内容包括()。
借贷记账法具有以下优点( )。
已知数列{an}的前n项和Sn=n2+kn(k∈N*),且Sn的最大值为8。(1)确定常数k,求an;(2)求数列{}的前n项和Tn。
(1)用热水洗去木屑(2)将纸从印版上揭起并阴干(3)把纸覆盖在版面上,用刷子轻轻刷纸(4)用刷子蘸墨汁均匀刷于版面上(5)将有字的一面贴在木板上,由刻字工逐字雕刻(6)将书稿写于纸上
Ononeoftheshelvesofanolddresser,incompanywitholdanddustysauce-boats,jugs,dishesandplates,andpaidbills,res
DearManager,Iamwritingtoyoutocomplainabouttheserviceinyourhotel.Ihadaterriblestayinroom2532ofOrange
最新回复
(
0
)